Dersliklerde kabul edilebilir COVID-19 enfeksiyon riskine dayalı belirlenen havalandırma oranlarının ısıtmadan kaynaklanan enerji tüketimine etkisi
Bu çalışmada, SARS-CoV-2 salgınında doğal havalandırılan yükseköğretim dersliklerinde, kabul edilebilir enfeksiyon riskine dayalı belirlenen havalandırma oranlarının COVID-19 vaka sayısına, enfeksiyon olasılığına ve çeşitli iklim bölgelerinde ısıtmadan kaynaklanan enerji tüketimine etkisi araştırılmıştır. Havalandırma oranları, yeni vaka sayısı ve enfeksiyon olasılığı hava kaynaklı enfeksiyon olasılığının modellenmesinde kullanılan SARS-CoV-2’ye uyarlanmış Wells-Riley modeliyle belirlenmiştir. Isıtmadan kaynaklanan enerji tüketimi, ısı dengesi metoduna göre EnergyPlus tabanlı bina enerji simülasyonuyla hesaplanmıştır. Önerilen yöntem, vaka çalışması olarak farklı iklimde bölgelerinde bulunan üniversite dersliklerine uygulanmıştır. Bulgular, dersliklerde kabul edilebilir enfeksiyon riskinin sağlanabilmesi için havalandırma oranlarının COVID-19 öncesine göre ortalama %51,41 arttığını, günlük COVID-19 vaka sayısının ise COVID-19 öncesi dönemin şartlarına göre ortalama %63,19 azaldığını göstermiştir. COVID-19 sürecinde artan havalandırma oranları, dersliklerin ısıtmadan kaynaklı enerji tüketiminin COVID-19 öncesine göre ılıman iklimde %192,37 (29322 kWh); soğuk iklimde %98,80 (57083 kWh); çok soğuk iklimde ise %79,21 (82467 kWh) artmasına sebep olmuştur. COVID-19 sürecinde doğal havalandırılan dersliklere sahip üniversitelerde, eğitim öğretim dönemi, havalandırmanın iç ortam termal konfor kontrolü için uygun olduğu dönemlere göre belirlenmelidir. Bu durumda, ısıtmadan kaynaklanan enerji tüketimi ılıman iklimde %86,52; soğuk iklimde %69,60; çok soğuk iklimde ise %61,40 oranında azalmaktadır. Bu sonuçlar, gelecekte hava yoluyla bulaşan hastalıklara ve olası diğer salgınlara iklimsel farklılıklara göre daha iyi hazırlanılabileceğini göstermektedir.
The effect of ventilation rates determined based on the acceptable risk of COVID-19 infection in classrooms on energy consumption from heating
In this study, the effect of ventilation rates determined based on acceptable infection risk on the number of COVID-19 cases, probability of infection and heating energy load in various climatic regions in naturally ventilated higher education classrooms during the SARS-CoV-2 pandemic were investigated. Ventilation rates, number of new cases and probability of infection were determined by the Wells-Riley model adapted to SARS-CoV-2, which was used to model the probability of airborne infection. The annual heating energy load was calculated with the EnergyPlus based building energy simulation according to the heat balance method. The proposed method was applied to university classrooms in different climatic regions as a case study. The findings showed that ventilation rates increased by 51,41% on average compared to pre-COVID-19, and the number of daily COVID-19 cases decreased by an average of 63.19% compared to the conditions of the pre-COVID-19 period to ensure an acceptable infection risk in classrooms. The increase in ventilation rates increased the annual heating energy loads of classrooms to 192.37% with 29322 kWh in a temperate climate compared to pre-COVID-19; by 98.80% with 57083 kWh in cold climate; and by 79.21% with 82467 kWh in very cold climates. In universities with naturally ventilated classrooms during the COVID-19 process, the academic year should be determined according to the periods when ventilation is suitable for indoor thermal comfort control. In this case, the energy consumption due to heating is 86.52% in a temperate climate; 69.60% in a cold climate; in very cold climates, it decreases by 61.40%. These results show that we can better prepare for airborne diseases and other possible epidemics in the future, according to climatic differences.
___
- 1. Sönmez N., Cavka B.T., Recommendations for the transformation of patient rooms into isolated patient rooms in the process of the COVID-19 pandemic, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (1), 175-188, 2022.
- 2. Lipinski T., Ahmad D., Serey N., Jouhara H., Review of ventilation strategies to reduce the risk of disease transmission in high occupancy buildings, International Journal of Thermofluids, 7-8, 100045, 2020.
- 3. de Man P., Paltansing S., Ong D. S. Y., Vaessen N., van Nielen G., Koeleman J. G. M., Outbreak of coronavirus disease 2019 (COVID-19) in a nursing home associated with aerosol transmission as a result of inadequate ventilation, Clinical Infectious Diseases, 73 (1), 170-171, 2021.
- 4. Morawska L., Tang J. W., Bahnfleth W., Bluyssen P., Boerstra A., Buonanno G., … Cao J., How can airborne transmission of COVID-19 indoors be minimised?, Environment International, 142, 105832, 2020.
- 5. Tang J.W., Li Y., Eames I., Chan P.K.S., Ridgway G.L., Factors involved in the aerosol transmission of infection and control of ventilation in healthcare premises, Journal of Hospital Infection, 64 (2), 100-114, 2006.
- 6. Wang Z., Galea E.R., Grandison A., Ewer J., Jia F., A coupled Computational Fluid Dynamics and Wells-Riley model to predict COVID-19 infection probability for passengers on long-distance trains, Safety Science, 147, 105572, 2022.
- 7. Franco A., Leccese F., Measurement of CO2 concentration for occupancy estimation in educational buildings with energy efficiency purposes, Journal of Building Engineering, 32, 101714, 2020.
- 8. European Commission, Joint Research Centre, Directorate-General for Health and Consumers, Institute for Health and Consumer Protection, Carrer P, Kephalopoulos S, Annesi-Maesano I, Rudnai P, Madureira J, … Oliveira Fernandes E., SINPHONIE – Schools Indoor Pollution & Health Observatory Network in Europe : executive summary, Publications Office, 2014.
- 9. American Society of Heating Refrigerating and Air-Conditioning Engineers. ASHRAE Epidemic Task Force: Schools & Universities. https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-reopening-schools-and-universities-c19-guidance.pdf. Yayın tarihi Mayıs 14, 2021. Erişim tarihi Şubat 16, 2022.
- 10. REHVA. How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces. https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf. Yayın tarihi Nisan 15, 2021. Erişim tarihi Haziran 28, 2022.
- 11. World Health Organization. Roadmap to Improve and Ensure Good Indoor Ventilation in the Context of COVID-19. https://apps.who.int/iris/bitstream/handle/10665/339857/%209789240021280-eng.pdf?sequence=1. Yayın Tarihi 2021. Erişim tarihi Şubat 16, 2022.
- 12. Allen J.G., Ibrahim A.M., Indoor air changes and potential implications for SARS-CoV-2 transmission, JAMA, 325 (20), 2112-2113, 2021.
- 13. Jones E., Young A., Clevenger K., vd. Risk Reduction Strategies for Reopening Schools. https://crosscut.com/sites/default/files/files/harvard-healthy-buildings-program-covid19-risk-reduction-in-schools-nov-2020-2.pdf. Yayın tarihi Haziran, 2020. Güncelleme tarihi Kasım, 2020. Erişim tarihi Ocak 4, 2022.
- 14. Dai H., Zhao B., Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Build Simul., 13 (6), 1321-1327, 2020.
- 15. Hou D., Katal A., Wang L (Leon)., Bayesian calibration of using CO2 sensors to assess ventilation conditions and associated COVID-19 airborne aerosol transmission risk in schools. https://www.medrxiv.org/content/10.1101/2021.01.29.21250791v1. Yayın tarihi Şubat 3, 2021. Erişim tarihi Mart 7, 2023.
- 16. Kurnitski J., Kiil M., Wargocki P., Boerstra A., Seppänen O., Olesen B., Morawska L., Respiratory infection risk-based ventilation design method. Building and Environment, 206, 108387, 2021.
- 17. Riley E. C., Murphy G., Riley R. L., Airborne spread of measles in a suburban elementary school, American Journal of Epidemiology, 107 (5), 421-432, 1978.
- 18. Zhang S., Lin Z., Dilution-based evaluation of airborne infection risk - Thorough expansion of Wells-Riley model, Building and Environment, 194, 107674, 2021.
- 19. Nazaroff W. W., Indoor aerosol science aspects of SARS-CoV-2 transmission, Indoor Air, 32 (1), e12970, 2022.
- 20. Foster A., Kinzel M., Estimating COVID-19 exposure in a classroom setting: A comparison between mathematical and numerical models, Physics of Fluids, 33 (2), 021904, 2021.
- 21. Atkinson J., Chartier Y., Pessoa-Silva C. L., Jensen P., Li Y., Seto W. H., Natural Ventilation for Infection Control in Health-Care Settings, World Health Organization, Geneva, 2009.
- 22. Yan Y., Li X., Shang Y., Tu J., Evaluation of airborne disease infection risks in an airliner cabin using the Lagrangian-based Wells-Riley approach, Build Environ., 121, 79-92, 2017.
- 23. Sze To G. N., Chao C. Y. H., Review and comparison between the Wells–Riley and dose-response approaches to risk assessment of infectious respiratory diseases, Indoor Air, 20 (1), 2-16, 2010.
24. Yılmazoğlu M. Z., Covid-19 enfeksiyon riski hesaplama aracı, Türk Tesisat Mühendisleri Derneği Dergisi, 127, 2020.
- 25. Gazi Üniversitesi. Haberler - Üniversitemiz KOVID-19 Bulaşma Riskini Hesaplayan Yeni Bir Yöntem Geliştirdi. http://gazi.edu.tr/view/news/261070/universitemiz-kovid-19-bulasma-riskini-hesaplayan-yeni-bir-yontem-gelistirdi. Yayın tarihi Şubat 12, 2021. Erişim tarihi Ocak 31, 2023.
- 26. Park S., Choi Y., Song D., Kim E. K., Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building, Science of The Total Environment, 789, 147764, 2021.
- 27. Ascione F., De Masi R. F., Mastellone M., Vanoli G. P., The design of safe classrooms of educational buildings for facing contagions and transmission of diseases: A novel approach combining audits, calibrated energy models, building performance (BPS) and computational fluid dynamic (CFD) simulations, Energy and Buildings, 230, 110533, 2021.
- 28. Orosa J. A., Kameni Nematchoua M., Reiter S., Air changes for healthy indoor ambiences under pandemic conditions and its energetic implications: A Galician case study, Applied Sciences, 10 (20), 7169, 2020.
- 29. Zhang X., Pellegrino F., Shen J., Copertaro B., Huang P., Kumar Saini P., Lovati M., A preliminary simulation study about the impact of COVID-19 crisis on energy demand of a building mix at a district in Sweden, Applied Energy, 280, 115954, 2020.
- 30. Yüksel A., Arıcı M., Krajčík M., Civan M., Karabay H., Energy consumption, thermal comfort, and indoor air quality in mosques: Impact of Covid-19 measures, Journal of Cleaner Production, 354, 131726, 2022.
- 31. American Society of Heating, Refrigerating and Air-Conditioning Engineers, 2005 ASHRAE Handbook: Fundamentals - SI edition, American Society of Heating Refrigerating and Air-Conditionin, ASHRAE, Atlanta, Ga., 2005.
- 32. EnergyPlus T.M. https://energyplus.net/. Yayın tarihi Mart 31, 2023. Erişim tarihi Nisan 21, 2023.
- 33. Stabile L., Pacitto A., Mikszewski A., Morawska L., Buonanno G,. Ventilation procedures to minimize the airborne transmission of viruses in classrooms, Building and Environment, 202, 10804, 2021.
- 34. Vignolo A., Gómez A. P., Draper M., Mendina M., Quantitative assessment of natural ventilation in an elementary school classroom in the context of COVID-19 and its Impact in airborne transmission, Applied Sciences, 12 (18), 9261, 2022.
- 35. Achaiah N. C., Subbarajasetty S. B., Shetty R. M., R0 and Re of COVID-19: Can we predict when the pandemic outbreak will be contained? Indian J Crit Care Med., 24 (11), 1125-1127, 2020.
- 36. Schibuola L., Tambani C., High energy efficiency ventilation to limit COVID-19 contagion in school environments, Energy and Buildings, 240, 110882, 2021.
- 37. Gammaitoni L., Nucci M. C., Using a mathematical model to evaluate the efficacy of TB control measures, Emerging Infectious Diseases, 3 (3), 335-342, 1997.
- 38. Fears, A. C., Klimstra, W. B., Duprex, P., Hartman, A., Weaver, S. C., Plante, K. S....Roy, C. J., Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 in Aerosol Suspensions, Emerging Infectious Diseases, 26 (9), 2168-2171, 2020.
- 39. van Doremalen N., Bushmaker T., Morris D. H., Holbrook M. G., Gamble A., Williamson B. N., … Tamin A., Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1, New England Journal of Medicine, 382 (16), 1564-1567, 2020.
- 40. Buonanno G., Morawska L., Stabile L., Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications, Environment International, 145, 106112, 2020.
- 41. Chatoutsidou S. E., Lazaridis M., Assessment of the impact of particulate dry deposition on soiling of indoor cultural heritage objects found in churches and museums/libraries, Journal of Cultural Heritage, 39, 221-228, 2019.
- 42. Diapouli E., Chaloulakou A., Koutrakis P., Estimating the concentration of indoor particles of outdoor origin: A review, Journal of the Air & Waste Management Association, 63 (10), 1113-1129, 2013.
- 43. Miller S. L., Nazaroff W. W., Jimenez J. L., Boerstra A., Buonanno G., Dancer S. J., … Kurnitski J., Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event, Indoor Air, 31 (2), 314-323, 2021.
- 44. Thatcher T. L, Lai A. C. K., Moreno-Jackson R., Sextro R. G., Nazaroff W. W, Effects of room furnishings and air speed on particle deposition rates indoors, Atmospheric Environment, 36 (11), 1811-1819, 2002.
- 45. Buonanno G., Stabile L., Morawska L., Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment, Environment International, 141, 105794, 2020.
- 46. Adams W. C, California Environmental Protection Agency Air Resources Board Research Division, University of California, Davis Human Performance Laboratory, Measurement of Breathing Rate and Volume in Routinely Performed Daily Activities: Final Report, Contract No. A033-205, California Environmental Protection Agency Air Resources Board Research Division, Sacramento, 1993.
- 47. Binazzi B., Lanini B., Bianchi R., Romagnoli I., Nerini M., Gigliotti F., … Duranti R., Breathing pattern and kinematics in normal subjects during speech, singing and loud whispering, Acta Physiologica, 186 (3), 233-246, 2006.
- 48. Chen S. C., Chang C. F., Liao C. M., Predictive models of control strategies involved in containing indoor airborne infections. Indoor Air, 16 (6), 469-481, 2006.
- 49. Gao C.X., Li Y., Wei J., Cotton S., Hamilton M., Wang L., Cowling B. J., Multi-route respiratory infection: When a transmission route may dominate, Sci Total Environ., 752, 141856, 2021.
- 50. Stephens B. HVAC filtration and the Wells-Riley approach to assessing risks of infectious airborne diseases. National Air Filtration Association (NAFA) Foundation Report. https://www.built-envi.com/publications/nafa_iit_wellsriley%20-%20FINAL.pdf. Yayın tarihi Mart, 2013. Erişim tarihi Nisan 30, 2022.
- 51. Guo M., Xu P., Xiao T., He R., Dai M., Miller S. L., Review and comparison of HVAC operation guidelines in different countries during the COVID-19 pandemic, Building and Environment, 187, 107368, 2021.
- 52. Lyngse F. P., Kirkeby C. T., Denwood M., Christiansen L. E., Mølbak K., Møller C. H., … Skov R. L., Household transmission of SARS-CoV-2 Omicron variant of concern subvariants BA.1 and BA.2 in Denmark, Nat Commun., 13 (1), 5760, 2022.
- 53. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), Standard 62.1-2019, Ventilation for Acceptable Indoor Air Quality, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA, USA, 2019.
- 54. Ovali P.K., Biyoklimatik tasarım matrisi (TÜRKİYE), Trakya Üniversitesi Mühendislik Bilimleri Dergisi, 20 (2), 51-66, 2020.
- 55. Türk Standardı TSE 825, Binalarda Isı Yalıtım Kuralları. Türk Standartları Enstitüsü, Ankara, 2008.
- 56. Pusat S., Ekmekci I., A study on degree-day regions of Turkey, Energy Efficiency. 9 (2), 525-532, 2016.
- 57. Aktacir M. A., Büyükalaca O., Yılmaz T., A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions, Applied Energy, 87 (2), 599-607, 2010.
- 58. Ecevit A., Akinoglu B. G., Aksoy B., Generation of a typical meteorological year using sunshine duration data, Energy, 27 (10), 947-954, 2002.
- 59. Pusat S., Ekmekçi İ., Akkoyunlu M. T., Generation of typical meteorological year for different climates of Turkey, Renewable Energy, 75, 144-151, 2015.
- 60. Yılmaz Z., Evaluation of energy efficient design strategies for different climatic zones: Comparison of thermal performance of buildings in temperate-humid and hot-dry climate, Energy and Buildings, 39 (3), 306-316, 2007.
- 61. Atmaca U., TS 825 Binalarda Isı Yalıtım Kuralları Standardındaki Güncellemeler, Tesisat Mühendisliği, 154, 21-35, 2016.
- 62. Schimschar S., Boermans T., Kretschmer D., Offermann M., John A. U-Value maps Turkey: Applying the comparative methodology framework for cost-optimality in the context of the EPBD Final Report. https://www.izoder.org.tr/dosyalar/haberler/Turkiye-U-degerleri-haritasi-raporu-2016-Ingilizce.pdf. Yayın tarihi Ağustos 24, 2016. Erişim Tarihi Eylül 21, 2021.
- 63. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), Standard 169-2013, Climatic data for building design standards, American Society of Heating, Refrigerating and Air-Conditioning Engineers, USA, 2013.
- 64. Meteoroloji Genel Müdürlüğü. Resmi İstatistikler – Analizler. https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=H&m=ANKARA. Erişim tarihi Mayıs 7, 2023.
- 65. National Aeronautics and Space Administration. Global Modelling And Assimilation Office-MERRA-2. https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/. Erişim tarihi Mayıs 11, 2023.
- 66. Weather Spark. Sivas, Ankara ve Erzurum Bölgesinde İklimi ve Hava Durumu. https://tr.weatherspark.com/compare/y/100260~97345~102045/Sivas-Ankara-ve-Erzurum-Ortalama-Hava-Durumunun-Kar%C5%9F%C4%B1la%C5%9Ft%C4%B1rmas%C4%B1#Figures-WindSpeed. Erişim tarihi Mayıs 11, 2023.
- 67. Meteoroloji Genel Müdürlüğü. İklim Sınıflandırması. https://www.mgm.gov.tr/iklim/iklim-siniflandirmalari.aspx?m=ERZURUM. Erişim tarihi Mayıs 8, 2023.
- 68. Parlak Arslan H., Koçlar Oral G., Sensitivity analysis of facade design parameters in residential buildings in the context of climatic design, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (3), 1769-1780, 2023.
- 69. Özer G., The effect of building facades window/wall ratio and window properties on energy performance, Journal of the Faculty of Engineering and Architecture of Gazi University, 38 (2), 851-864, 2022.
- 70. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), Standard 90.1-2013, Energy Standard for Buildings Except Low-Rise Residential Buildings, American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, GA, USA, 2013.
- 71. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), Standard 90.2-2007; Energy-Efficient Design of Low-Rise Residential Buildings, American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, BC, Canada, 2007.
- 72. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), Standard 55-2013: Thermal environmental conditions for human occupancy, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA, USA, 2013.
- 73. Buratti C., Moretti E., Belloni E., Cotana F., Unsteady simulation of energy performance and thermal comfort in non-residential buildings, Building and Environment, 59, 482-491, 2013.
- 74. Eskin N., Türkmen H., Analysis of annual heating and cooling energy requirements for office buildings in different climates in Turkey, Energy and Buildings, 40 (5), 763-773, 2008.
- 75. Miyazaki T., Akisawa A., Kashiwagi T., Energy savings of office buildings by the use of semi-transparent solar cells for windows. Renewable Energy, 30 (3), 281-304, 2005.
- 76. University of Illinois and Ernest Orlando Lawrence Berkeley national laboratory. EnergyPlus engineering reference, Version 9.1.0 documentation. 2019.
- 77. Olsen E. L., Chen Q. (Yan)., Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate, Energy and Buildings, 35 (6), 560-571, 2003.
- 78. Witte M. J., Henninger R. H., Glazer J., Testing and Validation of a New Building Energy Simulation Program, Seventh International IBPSA Conference, Rio de Janeiro–Brazil, 353-360, 13-15 Ağustos, 2001.
- 79. Arjunan P., Poolla K., Miller C., EnergyStar++: Towards more accurate and explanatory building energy benchmarking, Applied Energy, 276, 115413, 2020.
- 80. Chung W., Review of building energy-use performance benchmarking methodologies, Applied Energy, 88 (5), 1470-1479, 2011.
- 81. Litardo J., Hidalgo-Leon R., Soriano G., Energy Performance and Benchmarking for University Classrooms in Hot and Humid Climates, Energies, 14 (21), 7013, 2021.
- 82. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. Mesleki Hizmetler Genel Müdürlüğü-Elektrik Enerjisinin Birincil Enerji ve Sera Gazı Salımı Katsayıları. https://webdosya.csb.gov.tr/db/meslekihizmetler/icerikler/elektrik-enerjisinin-birincil-enerji-ve-sera-gazi-salimi-katsayilari-agustos-2022den-sonra-20220825085911.pdf. Yayın tarihi Ağustos 23, 2022. Erişim tarihi Ekim 19, 2022.
- 83. Gui X., Gou Z., Zhang F., Yu R., The impact of COVID-19 on higher education building energy use and implications for future education building energy studies, Energy and Buildings, 251, 111346, 2021.
- 84. Gul M. S., Patidar S., Understanding the energy consumption and occupancy of a multi-purpose academic building, Energy and Buildings, 87, 155-165, 2015.
- 85. Klein-Banai C., Theis T. L., Quantitative analysis of factors affecting greenhouse gas emissions at institutions of higher education, Journal of Cleaner Production, 48, 29-38, 2013.
- 86. Gui X., Gou Z., Zhang F., The relationship between energy use and space use of higher educational buildings in subtropical Australia, Energy and Buildings, 211, 109799, 2020.
- 87. Khoshbakht M., Gou Z., Dupre K., Energy use characteristics and benchmarking for higher education buildings, Energy and Buildings, 164, 61-76, 2018.
- 88. Sekki T., Airaksinen M., Saari A., Measured energy consumption of educational buildings in a Finnish city, Energy and Buildings, 87, 105-115, 2015.
- 89. Katsaprakakis D. Al., Zidianakis G., Upgrading Energy Efficiency For School BuildingsIn Greece, Procedia Environmental Sciences, 38, 248-255, 2017.