Çok yönlü sıcak dövme işleminin Al-7Si-4Zn-3Cu alaşımının mekanik ve tribolojik özelliklerine etkisi

Bu çalışmada farklı çevrim sayılarında çok yönlü sıcak dövme işlemine tabi tutulmuş Al-7Si-4Zn-3Cu alaşımının mekanik ve tribolojik özellikleri incelenmiştir. Çok yönlü sıcak dövme işlemi alaşımın içyapısında bulunun silisyum parçalanmasına ve dendritik yapının ortadan kalkmasına yol açmıştır. Bu işlem Al-7Si-4Zn-3Cu alaşımının akma ve çekme dayanımı ile kopma uzaması değerlerini artırmış, sertliğini ise düşürmüştür. En yüksek akma ve çekme dayanımı iki çevrim dövme uygulanmış alaşımdan, en düşük sertlik ve en yüksek kopma uzaması üç evrim uygulanmış alaşımdan elde edilmiştir. Diğer taraftan çok yönlü sıcak dövülmüş alaşım homojenize edilmiş durumuna göre daha yüksek sürtünme katsayısı ve daha düşük aşınma direnci sergilemiştir. Aşınma deneyi sonucunda alaşımların yüzeylerinde sıvanmış tabakaların oluştuğu ve soyulmaların meydana geldiği görülmüştür. Ancak sıvanmanın gerek homojenize edilmiş gerekse dövülmüş durumdaki numunelerde etken aşınma mekanizması olduğu belirlenmiştir.

Effect of Multi-Directional Hot Forging on Mechanical and Tribological Properties of Al-7Si-4Zn-3Cu Alloy

In this study, mechanical and tribological properties of multi-directional hot forged Al-7Si-4Zn-3Cu alloy at different cycles were investigated.  Multi-directional hot forging resulted in both breaking up the silicon particles and the elimination of dendritic structure of the alloy. This process increased the yield and tensile strength with percentage elongation of the alloy but decreased its hardness. The highest yield and tensile strength were obtained from the alloy forged two cycles, while the alloy forged three cycles showed a lowest hardness but the highest percentage elongation.  On the other hand, hot forged alloy exhibited higher friction coefficient and lower wear resistance than those of its homogenized state. After the wear test, smeared and delaminated friction layers were observed on the worn surface of the alloy in all test conditions. However, smearing was determined to be the main operative wear mechanism for alloy in both homogenised and hot forged states.

___

  • 1. Ye, H., “An overview of the development of Al-Si-Alloy based material for engine applications”, Journal of Materials Engineering and Performance, Cilt 12, No 3, 288-297, 2003.
  • 2. Hirsch, J., “Recent development in aluminium for automotive applications”, Transactions of Nonferrous Metals Society of China, Cilt 24, No 7, 1995-2002, 2014.
  • 3. Alemdağ, Y. ve Beder, M., Microstructural, mechanical and tribological properties of Al–7Si–(0–5)Zn alloys, Cilt 63, 2014.
  • 4. Birol, Y., “Semisolid processing of near-eutectic and hypereutectic Al–Si–Cu alloys”, Journal of Materials Science, Cilt 43, No 10, 3577-3581, 2008.
  • 5. Kori, S.A., Murty, B.S. ve Chakraborty, M., “Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium”, Materials Science and Engineering: A, Cilt 283, No 1, 94-104, 2000.
  • 6. Basavakumar, K.G., Mukunda, P.G. ve Chakraborty, M., “Influence of grain refinement and modification on microstructure and mechanical properties of Al–7Si and Al–7Si–2.5Cu cast alloys”, Materials Characterization, Cilt 59, No 3, 283-289, 2008.
  • 7. Cao, Y., Ni, S., Liao, X., Song, M. ve Zhu, Y., “Structural evolutions of metallic materials processed by severe plastic deformation”, Materials Science and Engineering: R: Reports, Cilt 133, 1-59, 2018.
  • 8. Suresh, M., Sharma, A., More, A.M., Kalsar, R., Bisht, A., Nayan, N. ve Suwas, S., “Effect of equal channel angular pressing (ECAP) on the evolution of texture, microstructure and mechanical properties in the Al-Cu-Li alloy AA2195”, Journal of Alloys and Compounds, Cilt 785, 972-983, 2019.
  • 9. Estrin, Y. ve Vinogradov, A., “Extreme grain refinement by severe plastic deformation: A wealth of challenging science”, Acta Materialia, Cilt 61, No 3, 782-817, 2013.
  • 10. Sabirov, I., Murashkin, M.Y. ve Valiev, R.Z., “Nanostructured aluminium alloys produced by severe plastic deformation: New horizons in development”, Materials Science and Engineering: A, Cilt 560, 1-24, 2013.
  • 11. Cherukuri, B., Nedkova, T.S. ve Srinivasan, R., “A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing, multi-axial compressions/forgings and accumulative roll bonding”, Materials Science and Engineering: A, Cilt 410-411, 394-397, 2005.
  • 12. Zhu, Q.F., Wang, J., Li, L., Ban, C.Y., Zhao, Z.H. ve Cui, J.Z.“Effect of Forging Temperature on Deformability and Structure Evolution of High Purity Aluminium during Multi-Directional Forging Process”, in Materials Science Forum. 2017. Trans Tech Publ.
  • 13. Zhang, Z.X., Qu, S.J., Feng, A.H., Hu, X. ve Shen, J., “Microstructural mechanisms during multidirectional isothermal forging of as-cast Ti-6Al-4V alloy with an initial lamellar microstructure”, Journal of Alloys and Compounds, Cilt 773, 277-287, 2019.
  • 14. Gao, N., Wang, C.T., Wood, R.J.K. ve Langdon, T.G.J.J.o.M.S., “Tribological properties of ultrafine-grained materials processed by severe plastic deformation”, Cilt 47, No 12, 4779-4797, 2012.
  • 15. Larouche, D., “Application of cast Al–Si alloys in internal combustion engine components AU - Javidani, Mousa”, International Materials Reviews, Cilt 59, No 3, 132-158, 2014.
  • 16. Beder, M., Çinko ve Bakır Katkılarının Al-7Si Alaşımının Yapı, Mekanik ve Tribolojik Özelliklerine Etkilerinin İncelenmesi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014.
  • 17. Kapoor, R., Sarkar, A., Yogi, R., Shekhawat, S.K., Samajdar, I. ve Chakravartty, J.K., “Softening of Al during multi-axial forging in a channel die”, Materials Science and Engineering: A, Cilt 560, 404-412, 2013.
  • 18. Stemler, P.M.A., Flausino, P.C.A., Pereira, P.H.R., de Faria, C.G., Almeida, N.G.S., Aguilar, M.T.P. ve Cetlin, P.R., “Mechanical behavior and microstructures of aluminum in the Multi-Axial Compression (MAC) with and without specimen re-machining”, Materials Letters, Cilt 237, 84-87, 2019.
  • 19. Hegde, S. ve Prabhu, K.N., “Modification of eutectic silicon in Al–Si alloys”, Journal of Materials Science, Cilt 43, No 9, 3009-3027, 2008.
  • 20. Purcek, G., Saray, O., Kul, O.J.M. ve International, M., “Microstructural evolution and mechanical properties of severely deformed Al-12Si casting alloy by equal-channel angular extrusion”, Cilt 16, No 1, 145-154, 2010.
  • 21. Naser, T.S.B., Bobor, K. ve Krállics, G.J.P.P.M.E., “Tensile behavior of multiple forged 6082 Al alloy”, Cilt 58, No 2, 113-117, 2014.
  • 22. Clarke, J. ve Sarkar, A.J.W., “Wear characteristics of as-cast binary aluminium-silicon alloys”, Cilt 54, No 1, 7-16, 1979.
  • 23. Lee, P.P., Savaskan, T. ve Laufer, E.J.W., “Wear resistance and microstructure of Zn-Al-Si and Zn-Al-Cu alloys”, Cilt 117, No 1, 79-89, 1987.
  • 24. Dey, S., Perry, T. ve Alpas, A.J.W., “Micromechanisms of low load wear in an Al–18.5% Si alloy”, Cilt 267, No 1-4, 515-524, 2009.
  • 25. Torabian, H., Patak, J. ve Tiwari, S.J.J.o.m.s.l., “Effect of hardness on wear rates of AI-Si alloys”, Cilt 14, No 23, 1631-1632, 1995.
  • 26. Bai, B.P. ve Biswas, S.J.L.E., “Mechanism of wear in dry sliding of a hypoeutectic aluminum alloy”, Cilt 43, No 1, 57-61, 1987.
  • 27. Li, X. ve Tandon, K.J.W., “Mechanical mixing induced by sliding wear of an Al–Si alloy against M2 steel”, Cilt 225, 640-648, 1999.
  • 28. Dwivedi, D.J.M. ve Design, “Adhesive wear behaviour of cast aluminium–silicon alloys: Overview”, Cilt 31, No 5, 2517-2531, 2010.
  • 29. Sarkar, A. ve Clarke, J.J.W., “Friction and wear of aluminium-silicon alloys”, Cilt 61, No 1, 157-167, 1980.
  • 30. Alemdağ, Y. ve Savaşkan, T.J.T.L., “Effects of silicon content on the mechanical properties and lubricated wear behaviour of Al–40Zn–3Cu–(0–5) Si alloys”, Cilt 29, No 3, 221-227, 2008.
  • 31. Xu, C., Yang, Y., Wang, H. ve Jiang, Q.J.J.o.m.s., “Effects of modification and heat-treatment on the abrasive wear behavior of hypereutectic Al–Si alloys”, Cilt 42, No 15, 6331-6338, 2007.
  • 32. Wilson, S. ve Alpas, A.J.W., “Thermal effects on mild wear transitions in dry sliding of an aluminum alloy”, Cilt 225, 440-449, 1999.
  • 33. Mahato, A., Perry, T.A., Jayaram, V. ve Biswas, S.J.W., “Pressure and thermally induced stages of wear in dry sliding of a steel ball against an aluminium–silicon alloy flat”, Cilt 268, No 9-10, 1080-1090, 2010.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ