1H-1, 2, 4-triazole-3-thiol modifiye altın elektrot kullanılarak fenolün elektrokimyasal davranışının incelenmesi ve voltametrik tayini

Bu çalışmada, 1H-1,2,4-triazole-3-thiol (T3T) ile altın (Au) elektrot yüzeyi kaplanarak Au/T3T elektrodu hazırlanmıştır. Kaplama işlemi, dönüşümlü voltametri (CV) yöntemi kullanılarak 1×10-3 mol L-1 T3T çözeltisi içerisinde, 0,1 V s-1 tarama hızıyla -0,8 V ile +1,5 V arasında, 30 çevrim sayısı ile gerçekleştirilmiştir. Hazırlanan Au/T3T elektrodu yüzeyinde dönüşümlü voltametri (CV) ve diferansiyel puls voltametrisi (DPV) teknikleri kullanılarak fenolün (Ph) elektrokimyasal davranışı incelenmiş ve DPV tekniği ile voltametrik tayini gerçekleştirilmiştir. Au/T3T elektrodu ile Ph tayini için uygun olan destek elektrolit ve pH gibi optimum çalışma şartları belirlenmiştir. En uygun destek elektrolit ortamının pH 1.0 HClO4 çözeltisi olduğu belirlenmiştir. Au elektrot yüzeyinin T3T ile modifiye edilmesiyle, fenolün yükseltgenme pikinin akım değerinde 3,41 kat artış olduğu belirlenmiştir. Au/T3T modifiye elektrot ile Ph için çalışma aralığı 1,0´10-7–3,6´10-5 M ve gözlenebilme sınırı (LOD) 1,2´10-8 M olarak belirlenmiştir. Au/T3T elektrodunun Ph tayininde iyi bir tekrarlanabilirlik, kararlılık ve seçiciliğe sahip olduğu tespit edilmiştir. Modifiye elektrotla, musluk suyunda standart ekleme yöntemi kullanarak düşük bağıl standart sapma (BSS) ve iyi bir geri kazanım değerleri ile Ph tayini gerçekleştirilmiştir. 

Investigation of the electrochemical behavior of phenol using 1H-1, 2, 4-triazole-3-thiol modified gold electrode and its voltammetric determination

In this study 1H-1,2,4-triazole-3-thiol (T3T) was deposited at the gold electrode to fabricate a new sensor andused for the determination of phenol (Ph). Comparing with the bare Au and T3T modified Au (Au/T3T)electrode, the Au/T3T electrode has higher catalytic activities towards the oxidation of Ph. Figure A showsthat electrode modification provided 3.41-fold increase at the precision.Figure A. Differential pulse voltammograms of Ph on the Au and Au/T3T electrode at pH 1.0 in HClO4solution (a), Possible oxidation mechanism of phenol (b).Purpose: The aim of this study to develop a new and applicable sensor in real samples used for thedetermination of phenol compound.Theory and Methods:Phenol is a kind of pollutant and it widely exists in water, atmosphere, chemical productions, and canned food.The phenol is potentially fatal if ingested, inhaled and absorbed by skin and may cause severe burns andinfluence kidney, liver and central nervous system. Therefore, determination of phenol is very important dueto its toxic and dangerous properties to enviromental and people’s health. The use of modified electrodes inanalytical applications has become an active research area in electrochemistry thanks to its low cost, rapidresponse, low detection limit, selectivity and high precision. Modification of electrode surfaces with redoxactive organic molecules that contain heteroatom has an important process. Among the coating molecules onelectrode surfaces, triazole and its derivatives have been preferred because of their advantages of having highredox activity and quietly good thermal stability.Results:The calibration curve and limit of detection (LOD) were obtained in the range of 1.0×10-7 – 3.6 ×10-5 mol L-1and 1.2×10-8 mol L-1 on the Au/T3T modified electrode, respectively. The interference effects of variousanions, cations and compounds on this method were investigated. Besides, the reproducibility, repeatability,and stability measurements were also assayed. In addition, the obtained electrode showed satisfactory resultswhen applied to the determination of Ph in tap water with low relative standart deviation values on the Au/T3Tmodified electrode by standard addition method.Conclusion:This study has indicated that the T3T modified Au electrode exhibits highly electrocatalytic activity to Phoxidation at pH 1.0 in HClO4 solution. The prepared electrode was successfully used to the determination ofPh in tap water.  

___

  • KAYNAKLAR (REFERENCES)
  • [1] Aksu Z., Yener J., Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, Process Biochemistry, 33 (6), 649-655, 1998.
  • [2] Yener J., Aksu, Z., The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: comparison with granular avtivated carbon, J. of Environmental Science and Health Part AToxic/ Hazardous Engineering, Substance and Environmental Engineering, 34 (9), 1777-1796, 1999.
  • [3] Çokay E., Şengül F., Toksik kirleticilerin ileri oksidasyon prosesleri ile arıtımı, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 8 (2), 1-9, 2006.
  • [4] Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Phenol (Update). Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. 1998.
  • [5] Dede Ö. T., Sezer M., Aksu çayı su kalitesinin belirlenmesinde Kanada su kalitesi indeks (CWQI) modelinin uygulanması, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 909-917, 2017.
  • [6] Emerson E., The condensation of aminoantipyrine. II. A new color test for phenolic compounds, The Journal of Organic Chemistry, 8 (5), 417-428, 1943.
  • [7] Tang G., Huang Y., Zhang T., Wang Q., Crommen J., Fillet M., Jiang Z., Determination of phenolic acids in extra virgin olive oil using supercritical fluid chromatography coupled with single quadrupole mass spectrometry, Journal of pharmaceutical and biomedical analysis, 157, 217-225, 2018.
  • [8] Luo X., Zheng H., Zhang Z., Wang M., Yang B., Huang L., Wang M., Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection, Microchemical Journal, 137, 148-154, 2018.
  • [9] Luo X., Zheng H., Zhang Z., Wang M., Yang B., Huang L., Wang, M., Cloud point extraction for simultaneous determination of 12 phenolic compounds by high performance liquid chromatography with fluorescence detection, Microchemical Journal, 137, 148-154, 2018.
  • [10] Wei C., Huang Q. T., Hu S. R., Zhang H. Q., Zhang W. X., Wang Z. M., Zhu M., Dai P., Huang L., Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multiwalled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149, 237–244, 2014. https://doi.org/10.1016/j.electacta.2014.10.051
  • [11] Kaffash A., Zare H. R., Rostami K., Highly sensitive biosensing of phenol based on the adsorption of the phenol enzymatic oxidation product on the surface of an electrochemically reduced graphene oxide-modified electrode, Analytical Methods, 10 (23), 2731-2739, 2018.
  • [12] Merkyte V., Morozova K., Boselli E., Scampicchio M., Fast and simultaneous determination of antioxidant activity, total phenols and bitterness of red wines by a multichannel amperometric electronic tongue, Electroanalysis, 30(2), 314-319, 2018.
  • [13] Rocha D. P., Dornellas R. M., Cardoso R. M., Narciso L. C., Silva M. N., Nossol E., Munoz R. A., Chemically versus electrochemically reduced graphene oxide: improved amperometric and voltammetric sensors of phenolic compounds on higher roughness surfaces, Sensors and Actuators B: Chemical, 254, 701-708, 2018.
  • [14] Asan G., Çelikkan H., Askorbik asitin MoS2 esaslı elektrotla elektrokimyasal tayini, Journal of the Faculty of Engineering and Architecture of Gazi University, 32 (3), 617–625, 2017.
  • [15] Calam T. T., Hasdemir E., Application of 1, 6-hexanedithiol and 1-hexanethiol self-assembled monolayers on polycrystalline gold electrode for determination of Fe (II) using square wave voltammetry, Gazi University Journal of Science, 31 (1), 53-64, 2018.
  • [16] Uzun D., Gündüzalp A. B., Hasdemir E., Selective determination of dopamine in the presence of uric acid and ascorbic acid by N, N′-bis (indole-3-carboxaldimine)-1, 2-diaminocyclohexane thin film modified glassy carbon electrode by differential pulse voltammetry, Journal of Electroanalytical Chemistry, 747, 68-76, 2015.
  • [17] Danyıldız Z., Uzun D., Calam T. T., Hasdemir E., A voltammetric sensor based on glassy carbon electrode modified with 1H-1, 2, 4-triazole-3-thiol coating for rapid determination of trace lead ions in acetate buffer solution, Journal of Electroanalytical Chemistry, 805, 177-183, 2017.
  • [18] Karabiberoğlu Ş. U., Koçak Ç. C., Voltammetric determination of vanillin in commercial food products using overoxidized poly (pyrrole) film-modified glassy carbon electrodes, Turkish Journal of Chemistry 42 (2), 291-305, 2018.
  • [19] Wu W., Yang L., Zhao F., Zeng B., A vanillin electrochemical sensor based on molecularly imprinted poly (1-vinyl-3-octylimidazole hexafluoride phosphorus)− multi-walled carbon nanotubes@ polydopamine–carboxyl single-walled carbon nanotubes composite, Sensors and Actuators B: Chemical, 239, 481-487, 2017.
  • [20] Barsan M. M., Pinto E. M., Brett C. M., Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors, Electrochimica Acta, 53(11), 3973-3982, 2008.
  • [21] Nazari M., Kashanian S., Moradipour P., Maleki N., A novel fabrication of sensor using ZnO-Al2O3 ceramic nanofibers to simultaneously detect catechol and hydroquinone, Journal of Electroanalytical Chemistry, 812, 122-131, 2018.
  • [22] Laviron E., The use of linear potential sweep voltammetry and of ac voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes, J. Electroanal. Chem. 100, 263-270, 1979.
  • [23] Chen C., Chen W., Qian L., Gao Z., Determination of catechol by cetyltrimethylammonium bromide functionalized graphene modified electrode, Advances in Sciences and Engineering, 10 (1), 1-1, 2018.
  • [24] Nady H., El-Rabiei M. M., El-Hafez G. A., Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution, Egyptian Journal of Petroleum, 26 (3), 669-678, 2017.
  • [25] Goulart L. A., Gonçalves R., Correa A. A., Pereira E. C., Mascaro L. H. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol, Microchimica Acta, 185 (1), 12, 2018.
  • [26] Zhao G. H, Tang Y. T, Liu M. C., Lei Y. Z.,Xiao X. E., Direct and simultaneous determination of phenol, hydroquinone and nitrophenol at borondoped diamond film electrode, Chinese Journal of Chemistry, 25, 1445–1450, 2007. https:// doi.org/10.1002/cjoc.200790267
  • [27] Hashemnia S., Khayatzadeh S., Hashemnia M., Electrochemical detection of phenolic compounds using composite film of multiwall carbon nanotube/surfactant/tyrosinase on a carbon paste electrode, J. Solid State Electrochem., 16:473–479, 2012. https://doi.org/10.1007/s10008-011-1355-2
  • [28] Shahbakhsh M., Noroozifar M., Poly (dopamine quinone-chromium (III) complex) microspheres as new modifier for simultaneous determination of phenolic compounds, Biosensors and Bioelectronics, 102, 439-448, 2018.
  • [29] Campuzano S., Serra B., Pedrero M., Villena F. J. M., Pingarrón J. M., Amperometric flow-injection determination of phenolic compounds at self-assembled monolayer-based tyrosinase biosensors, Analytica Chimica Acta, 494, 187–197, 2003.
  • [30] Tatli F., Uzun D., Calam T. T., Gündüzalp A. B., Hasdemir E., Preparation and characterization of 3‐[(1H‐1, 2, 4‐triazole‐3‐ylimino) methyl] naphtalene‐2‐ol film at the platinum surface for selective voltammetric determination of dopamine in the presence of uric acid and ascorbic acid, Surface and Interface Analysis, 51 (4), 475-483, 2019.
Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi-Cover
  • ISSN: 1300-1884
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1986
  • Yayıncı: Oğuzhan YILMAZ
Sayıdaki Diğer Makaleler

Termal görüntülerdeki gömülü plastik anti-personel mayınlarının dairesel hough dönüşümü destekli aktif termografi yöntemi ile tespiti

Murat KILINÇ, Haluk GÖZDE

Çekişmeli üretici ağ ile ölçeklenebilir görüntü oluşturma ve süper çözünürlük

Ceren GÜZEL TURHAN, Hasan Şakir BİLGE

Elektrikli araçlar için mıknatıs oranı ve moment titreşimi azaltılmış yüksek verimli sürekli mıknatıslı senkron motor tasarım süreci ve gerçeklenmesi

Hatice KURNAZ ARAZ, Murat YİLMAZ

Dalgacık dönüşümü ve makine öğrenme teknikleri kullanılarak FTIR sinyallerinden kolon kanseri hastaları ve sağlıklı kişileri sınıflandırmak için yeni bir yöntem

Suat TORAMAN, İbrahim TÜRKOĞLU

Bulanık bilişsel haritalara dayalı yeni bir ürün konumlandırma yaklaşımı

Umut ASAN, Çiğdem KADAİFÇİ

Daha hızlı bölgesel evrişimsel sinir ağları ile köpek davranışlarının tanınması ve takibi

Emre DANDIL, Rukiye POLATTİMUR

Seyhan Baraj rezervuarında katı madde birikimi etkisinin incelenmesi

Şerife Pınar GÜVEL, Recep YURTAL

Dinamik eş zamanlı topla dağıt araç rotalama probleminin çözümü için matematiksel model ve sezgisel yaklaşım: Rassal iteratif yerel arama değişken komşu iniş algoritması

Burak AYDOĞDU, Bahar ÖZYÖRÜK

İlkbahar mevsiminde zeytinlik arazilerde Poliklorlu Bifenil (PCB) konsantrasyonlarının belirlenmesi

Şeyma Nur ERKUL, Gizem EKER ŞANLI

Memristör tabanlı kaotik rössler devresi gerçeklemesi

Zehra Gülru ÇAM TAŞKIRAN, Herman SEDEF