MOF-303 – Aktif Karbon Karışımlarının Pasif Isı Yönetimi Uygulamaları için İncelenmesi

Küçük boyutlu elektronik ve nesnelerin interneti cihazlarının ısıl yönetimleri ekonomik ve yüksek verimli çözümler geliştirilmesi halinde desorpsiyon temelli ısı emiciler aracılığıyla gerçekleştirilebilir. Bu çalışmada, bu tarz sistemlerin maliyetlerini düşürmek ve su alım kapasitelerini artırmak amacıyla metal-organik çerçeve - aktif karbon karışımları incelenmektedir. İki emici arasındaki parçacık boyutu ve fiziksel özelliklerdeki farklılıklar uygun desorpsiyon özelliklerine yol açarken, aynı zamanda maliyetleri de düşürmektedir. Isıl yönetim uygulamaları için pasif desorpsiyon temelli ısı emiciler elde etmek amacıyla üretilen MOF-karbon karışımı bakır yüzeylere püskürtülmüştür. Elde edilen ısı emiciler test edilmiş olup; sonuçlarımız, yalnızca MOF temelli kaplama durumuna kıyasla MOF-karbon bazlı ısı emicilerin su alım kapasitesinde ≈%30'luk bir iyileşme ve termal performansta ≈%10'luk bir iyileşme elde edildiğini göstermektedir. Bu iyileşme, operasyonun erken aşamalarında hızlı desorpsiyona, ve sabit hal durumunda yavaş desorpsiyona atfedilmektedir. Ayrıca, kaplamalar kızılötesi görüntüleme yoluyla mikroskobik olarak da incelenmiş ve karbonun sahip olduğu daha düşük termal iletkenlik nedeniyle MOF parçacıklarından daha soğuk olduğu gözlemlenmiştir. Bu çalışma sadece desorpsiyon temelli ısı emicilerin soğutma performanslarını arttırmanın ekonomik bir yolunu göstermekle kalmayarak, aynı zamanda desorpsiyon odaklı termal yönetim stratejilerinin tasarımı için bir kılavuz haline de gelmiştir.

Investigation of MOF-303 – Active Carbon Mixtures for Passive Thermal Management Applications

Small sized electronics and IoT devices can be thermally managed through sorbent heat sinks if economical and efficient solutions are developed. Here, we investigate a mixture of metal-organic frameworks and active carbon to lower the costs and increase the water uptake capacity. The mismatch on particle size and physical properties between the two sorbents lead to favorable desorption characteristics while also cutting down on costs. We spray coat the mixture onto copper substrates to obtain passive sorbent heat sinks. Our results display an ≈30% enhancement in the water uptake capacity and an ≈10% improvement in the thermal performance for the heat sinks coated with the mixture when compared to the only MOF case. The enhancement is attributed to fast desorption in the early phases of operation and to slow desorption in the steady state. Furthermore, we also study the coating microscopically through infrared imaging and observe that the carbon is colder than the MOF particles due to the lower thermal conductivity it possesses. This study not only demonstrates an economic way of enhancing the cooling performance of sorbent heat sinks but it also serves as a guideline for the design of desorption driven thermal management strategies.

___

  • B. Bhushan, B. Bhushan, and Baumann, Springer handbook of nanotechnology. Springer, 2007.
  • A. L. Moore and L. Shi, "Emerging challenges and materials for thermal management of electronics," Materials today, vol. 17, no. 4, pp. 163-174, 2014.
  • R. J. McGlen, R. Jachuck, and S. Lin, "Integrated thermal management techniques for high power electronic devices," Applied thermal engineering, vol. 24, no. 8-9, pp. 1143-1156, 2004.
  • Z. He, Y. Yan, and Z. Zhang, "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, vol. 216, p. 119223, 2021.
  • R. Kandasamy, X.-Q. Wang, and A. S. Mujumdar, "Application of phase change materials in thermal management of electronics," Applied Thermal Engineering, vol. 27, no. 17-18, pp. 2822-2832, 2007.
  • T. Lu, "Thermal management of high power electronics with phase change cooling," International journal of heat and mass transfer, vol. 43, no. 13, pp. 2245-2256, 2000.
  • W. Nakayama, "Thermal management of electronic equipment: a review of technology and research topics," 1986.
  • A. Krishna and J. Lee, "Morphology-driven emissivity of microscale tree-like structures for radiative thermal management," Nanoscale and Microscale Thermophysical Engineering, vol. 22, no. 2, pp. 124-136, 2018.
  • D. Christen, M. Stojadinovic, and J. Biela, "Energy Efficient Heat Sink Design: Natural Versus Forced Convection Cooling," IEEE Transactions on Power Electronics, vol. 32, no. 11, pp. 8693-8704, 2017.
  • P. Teertstra, M. Yovanovich, and J. Culham, "Analytical forced convection modeling of plate fin heat sinks," Journal of Electronics Manufacturing, vol. 10, no. 04, pp. 253-261, 2000.
  • S. S. Haghighi, H. Goshayeshi, and M. R. Safaei, "Natural convection heat transfer enhancement in new designs of plate-fin based heat sinks," International Journal of Heat and Mass Transfer, vol. 125, pp. 640-647, 2018.
  • L. H. Saw, H. M. Poon, H. San Thiam, Z. Cai, W. T. Chong, N. A. Pambudi, and Y. J. King, "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied energy, vol. 223, pp. 146-158, 2018.
  • S. Lin, K. Sefiane, and J. Christy, "Prospects of confined flow boiling in thermal management of microsystems," Applied Thermal Engineering, vol. 22, no. 7, pp. 825-837, 2002.
  • D. Shin, S. W. Chung, E.-Y. Chung, and N. Chang, "Energy-optimal dynamic thermal management: Computation and cooling power co-optimization," IEEE Transactions on Industrial Informatics, vol. 6, no. 3, pp. 340-351, 2010.
  • H. Zu, W. Dai, Y. Li, K. Li, and J. Li, "Analysis of enhanced heat transfer on a passive heat sink with high-emissivity coating," International Journal of Thermal Sciences, vol. 166, p. 106971, 2021/08/01/ 2021.
  • A. M. Omer, "Renewable building energy systems and passive human comfort solutions," Renewable and sustainable energy reviews, vol. 12, no. 6, pp. 1562-1587, 2008.
  • H. Ye and G. Zhang, "A review of passive thermal management of LED module," Journal of Semiconductors, vol. 32, no. 1, p. 014008, 2011.
  • R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren, W. Shu, J. Cheng, G. Tao, W. Xu, and R. Chen, "Emerging materials and strategies for personal thermal management," Advanced Energy Materials, vol. 10, no. 17, p. 1903921, 2020.
  • J. Xu, J. Chao, T. Li, T. Yan, S. Wu, M. Wu, B. Zhao, and R. Wang, "Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air," ACS central science, vol. 6, no. 9, pp. 1542-1554, 2020.
  • B. B. Saha, E. C. Boelman, and T. Kashiwagi, "Computational analysis of an advanced adsorption-refrigeration cycle," Energy, vol. 20, no. 10, pp. 983-994, 1995.
  • R. P. Sah, B. Choudhury, and R. K. Das, "A review on adsorption cooling systems with silica gel and carbon as adsorbents," Renewable and Sustainable Energy Reviews, vol. 45, pp. 123-134, 2015/05/01/ 2015.
  • F. Stoeckli, T. Jakubov, and A. Lavanchy, "Water adsorption in active carbons described by the Dubinin–Astakhov equation," Journal of the Chemical Society, Faraday Transactions, 10.1039/FT9949000783 vol. 90, no. 5, pp. 783-786, 1994.
  • M. Ejeian and R. Z. Wang, "Adsorption-based atmospheric water harvesting," Joule, vol. 5, no. 7, pp. 1678-1703, 2021/07/21/ 2021.
  • C. Wang, L. Hua, H. Yan, B. Li, Y. Tu, and R. Wang, "A Thermal Management Strategy for Electronic Devices Based on Moisture Sorption-Desorption Processes," Joule, vol. 4, no. 2, pp. 435-447, 2020/02/19/ 2020.
  • A. A. Günay, S. Harish, M. Fuchi, I. Kinefuchi, Y. Lee, and J. Shiomi, "Metal–organic framework coated porous structures for enhanced thermoelectric performance," Energy Conversion and Management, vol. 255, p. 115289, 2022/03/01/ 2022.
  • L. Aftab, N. Iqbal, A. Asghar, and T. Noor, "Synthesis, characterization and gas adsorption analysis of solvent dependent Zn-BTC metal organic frameworks," Separation Science and Technology, vol. 56, no. 13, pp. 2159-2169, 2021.
  • J. Choi, L.-C. Lin, and J. C. Grossman, "Role of structural defects in the water adsorption properties of MOF-801," The Journal of Physical Chemistry C, vol. 122, no. 10, pp. 5545-5552, 2018.
  • M. L. Palash, I. Jahan, T. H. Rupam, S. Harish, and B. B. Saha, "Novel technique for improving the water adsorption isotherms of metal-organic frameworks for performance enhancement of adsorption driven chillers," Inorganica Chimica Acta, vol. 501, p. 119313, 2020/02/01/ 2020.
  • L. Garzón‐Tovar, J. Pérez‐Carvajal, A. Yazdi, J. Hernández‐Muñoz, P. Tarazona, I. Imaz, F. Zamora, and D. Maspoch, "A MOF@ COF composite with enhanced uptake through interfacial pore generation," Angewandte Chemie, vol. 131, no. 28, pp. 9612-9616, 2019.
  • X. Zheng, L. W. Wang, R. Z. Wang, T. S. Ge, and T. F. Ishugah, "Thermal conductivity, pore structure and adsorption performance of compact composite silica gel," International Journal of Heat and Mass Transfer, vol. 68, pp. 435-443, 2014/01/01/ 2014.
  • M. Yeşilbaş and J.-F. Boily, "Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces," Scientific Reports, vol. 6, no. 1, p. 32136, 2016/08/26 2016.
  • M. Manyangadze, N. Chikuruwo, C. Chakra, T. Narsaiah, M. Radhakumari, and G. Danha, "Enhancing adsorption capacity of nano-adsorbents via surface modification: A review," South African Journal of Chemical Engineering, vol. 31, no. 1, pp. 25-32, 2020.
  • F. Fathieh, M. J. Kalmutzki, E. A. Kapustin, P. J. Waller, J. Yang, and O. M. Yaghi, "Practical water production from desert air," Science advances, vol. 4, no. 6, p. eaat3198, 2018.
  • N. Hanikel, M. S. Prévot, F. Fathieh, E. A. Kapustin, H. Lyu, H. Wang, N. J. Diercks, T. G. Glover, and O. M. Yaghi, "Rapid cycling and exceptional yield in a metal-organic framework water harvester," ACS central science, vol. 5, no. 10, pp. 1699-1706, 2019.
  • J. D. Howe, C. R. Morelock, Y. Jiao, K. W. Chapman, K. S. Walton, and D. S. Sholl, "Understanding Structure, Metal Distribution, and Water Adsorption in Mixed-Metal MOF-74," The Journal of Physical Chemistry C, vol. 121, no. 1, pp. 627-635, 2017/01/12 2017.
  • I. A. Khan, A. Badshah, N. Haider, S. Ullah, D. H. Anjum, and M. A. Nadeem, "Porous carbon as electrode material in direct ethanol fuel cells (DEFCs) synthesized by the direct carbonization of MOF-5," Journal of Solid State Electrochemistry, vol. 18, no. 6, pp. 1545-1555, 2014.
  • S. Ito, H. Huang, F. Watanabe, H. Yuan, M. Hasatani, and N. Kobayashi, "Heat transfer during microwave-assisted desorption of water vapor from zeolite packed bed," Drying Technology, vol. 30, no. 15, pp. 1707-1713, 2012.
  • J. Chorover and M. L. Brusseau, "Kinetics of sorption—desorption," in Kinetics of water-rock interaction: Springer, 2008, pp. 109-149.
Gazi Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2015
  • Yayıncı: Aydın Karapınar