Bakır Katkılı Nikel Oksit Sentezi ve Hibrit Nanoyağlayıcıların Kompresör Yağı Olarak Uygulaması

Nanoyağlayıcılar, katı nanopartiküllere sahip oldukları için iyi ısı transfer özelliklerine sahiptir. Bu çalışmada, % 2,0 oranında bakır (Cu), basit bir kimyasal çökeltme yöntemi ile nikel oksit (NiO) nanopartiküllerine katkılanmıştır. Sentezlenen nanopartiküller, ağırlıkça % 0,5 ve % 1,0 oranlarında baz sıvı mineral yağ (MO) ile fiziksel olarak karıştırıldı. Hazırlanan süspansiyonda, yüzey geriliminin üstesinden gelmek için ağırlıkça % 0,5 oranında sodyum dodesil benzen sülfonat (SDBS) yüzey aktif malzemesi de kullanıldı. Bu şekilde soğutma sisteminde farklı konsantrasyonlarda NiO ve Cu katkılı NiO nanopartiküller ile hazırlanan nanoyağlayıcılar kullanılmıştır. Soğutma sisteminde ağırlıkça % 0,5 oranında NiO nanopartiküller ile hazırlanan nanoyağlayıcı kullanıldığında kompresör işi 24,971 kJ/h olarak hesaplanmıştır. Kompresör yağı olarak sırasıyla % 0,5 ve % 1,0 kütle oranlarında eklenmiş, Cu katkılı NiO nanopartiküller ile hazırlanan nanoyağlayıcı kullanıldığında kompresör işi 23,313 kJ/h ve 23,058 kJ/h olarak hesaplanmıştır. NiO tabanlı nanopartiküller, yüksek performanslı hibrit nanoyağlayıcı uygulamaları için umut verici bir malzeme olarak görülebilir.

The Synthesis Copper-doped Nickel Oxide and Application of Hybrid Nano-lubricants as a Compressor Oil

Nano-lubricants have good heat transfer properties due to having solid nanoparticles. In this report, 2.0% copper (Cu) were doped nickel oxide (NiO) nanoparticles by a facile chemical precipitation method. The synthesized nanoparticles were physically mixed with the base liquid mineral oil (MO) at 0.5% and 1.0% mass fraction. Sodium dodecyl benzene sulphonate (SDBS) surface active material at 0.5% mass fraction was also used in the prepared suspension in order to overcome the surface tension. In this way, nano-lubricants prepared with different concentrations of NiO and Cu-doped NiO nanoparticles were used in the refrigeration system. The compressor work was calculated as 24.971 kJ/h when nano-lubricant prepared with NiO nanoparticles at 0.5% mass fraction was used in the refrigeration system. Compressor work was calculated as 23.313 kJ/h and 23.058 kJ/h when using nano-lubricant prepared with NiO nanoparticles with Cu added in 0.5% and 1.0% mass fraction, respectively, as the compressor oil. The NiO-based nanoparticles can be a promising material for high-performance hybrid nano-lubricants applications.

___

  • [1]A. Shahsavar, P. Jha, M. Arıcı̀and P. Estelle,"Experimental investigation of the usability of therifled serpentine tube to improve energy and energyperformances of a nano fluid based photovoltaicthermal system," Renewable Energy, vol. 170, pp.410-425, 2021.doi:/https://dx.doi.org/10.1016/j.renene.2021.01.17.
  • [2]C. Zou, Q. Zhao, G. Zhang and B. Xiong,"Energy revolution: From a fossil energy era to anew energy era," Natural Gas Industry B , vol. 3, no.1, pp. 1-11, 2016.
  • [3]X. Cao, X. Dai and J. Liu, "Buildingenergy con-sumption status worldwide and the state-of-the-art technologies for zero energy buildings duringthe past decade," Energy and Buildings, vol.128,pp.198-213, 2016.
  • [4]Y. Himeur, A. Alsalemi, F. Bensaali and A.Amira, "Robust event-based nonintro usive appliance recog-nition using multi-scale wavelet packet tree and en-semble bagging tree," Applied Energy, vol. 267, no. 114877, 2020.
  • [5]Y. Himeur, A. Alsalemi, A. Al-Kababji, F. Bensaali, A. Amira, C. Sardianos and I. Varlamis, "A survey of recommender systems for energy effi-ciency in buildings: Principles, challenges and pro-spects," Information Fusion , vol. 72, pp.1-21,2021.doi: https://dx.doi.org/10.1016/j.inffus.2021.02.002
  • [6]M. Akkaya, T. Menlik, A. Sözen and M. Gürü, "The effects of triton X-100 and tween 80 surfactants on the thermal performance of a nano-lubricant: An ex-perimental study," International Journal of Precision Engineering and Manufacturing Green Technology , vol. 8, pp. 955-967, 2021. doi:https://dx.doi.org/10.1007/s40684-020-00280-w.
  • [7]M. Akkaya, T. Menlik, A. Sözen and M. Gürü, "Ex-perimental investigation of nanolubricant usage in a cooling system at different nanoparticle concentra-tions," Heat Transfer Research, vol. 51, no. 10, pp. 949-965, 2020. doi:https://doi.org/10.1615/HeatTransRes.2020033812.
  • [8]M. Akkaya, T. Menlik and A. Sözen,"Performance enhancement of a vapor compression cooling system: an application of POE/Al2O3," Journal of Polytechnic, 2021. https://dx.doi.org/10.2339/politeknik.679563
  • [9]F. Abbas, H. Ali, M. Shaban, M. Janjua, T. Shah,M.H. Doranehgard and F. Farukh, "Towardsconvective heat transfer optimization in aluminumtube automot-ive radiators: Potential assessment ofnovel Fe3O3-TiO2/water hybrid nanofluid," Journal of the Taiwan Institute of Chemical Engineers, 2021.doi: https://dx.doi.org/10.1016/j.jtice.2021.02.002
  • [10]I. Tlili, H.A. Nabwey, M.G. Reddy, N. Sandeep,and M. Pasupula, "Effect of resistive heating onincess-antly poignant thin needle in magnetohydrodynamic sakiadis hybrid nanofluid," Ain Shams Engineering Journal, vol. 12, no. 1, pp.1025-1032, 2021.doi:https://dx.doi.org/10.1016/j.jtice.2021.02.002
  • [11]L. Sundar, S. Mesfin, E.V. Ramana, Z. Saidand A.C. Sousa, "Experimental investigation ofthermo physical properties, heat transfer, pumpingpower, entropy generation, and exergy efficiency ofnanodia-mond+Fe3O4/60:40% water-ethyleneglycol hybrid nano fluid flow in a tube," Thermal Science and En-gineering Progress, vol. 21, 100799,2021.doi:https://dx.doi.org/10.1016/j.tsep.2020.100799
  • [12]M. Huang, H. Borzoei, A. Abdollahi, Z. Li andA.Karimipour, "Effect of concentration andsedimenta-tion on boiling heat transfer coefficientof GNPs-SiO2/deionized water hybrid nano fluid:An experi-mental investigation," International Communications in Heat and Mass Transfer, vol. 122,105141, 2021. doi:https://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105141
  • [13]Z. Li, A. Shahsavar, K. Niazi, A.A. Al-Rashedand S. Rostami, "Numerical assessment on thehydro-thermal behavior and irreversibility of MgO-Ag/wa-ter hybrid nano fluid flow through asinusoidal hair-pin heat-exchanger," International Communications in Heat and Mass Transfer, vol. 115,104628, 2020. doi:https://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104628
  • [14]W. Urmi, M.M. Rahman and W.A.W. Hamzah,"An experimental investigation on the thermophysical properties of 40% ethylene glycolbased TiO2-Al2O3 hybrid nano fluids," International Communica-tions in Heat and Mass Transfer, vol.116,104663, 2020. doi:https://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104663
  • [15]M. Sheikholeslami and D.D. Ganji, "Heattransfer of Cu water nano fluid flow between parallelplates," Powder Technology, vol. 235, pp. 873-879,2013.doi:https://dx.doi.org/10.1016/j.powtec.2012.11.030
  • [16]R. Nasrin and S. Parvin, "Investigation ofbuoy-ancy-driven flow and heat transfer in atrapezoidal cavity filled with water–Cu nano fluid,"International Communications in Heat and Mass Transfer, vol. 39, no. 2, pp. 270-274, 2012.doi:https://dx.doi.org/10.1016/j.icheatmasstransfer.2011.11.004
  • [17]M.S. Liu, M.C.C. Lin, C.Y. Tsai and C. Wang,"En-hancement of thermal conductivity with Cu fornano fluids using chemical reduction method,"International Journal of Heat and Mass Transfer ,vol. 49, no. 17-18, pp. 3028-3033, 2006.doi:https://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.02.012
  • [18]P. Puspitasari, A. Permanasari, M.S. Shaharunand D.I. Tsamroh, "Heat transfer characteristics ofNiO nanofluid in heat exchanger," AIP ConferenceProceedings, vol. 2228, no. 030023, 2020.
  • [19]S. Rostami, E. Raki, A. Abdollahi andA.S. Goldanlou, "Effects of different magneticfields on the boiling heat transfer coefficient of theNiO/deion-ized water nanofluid, an experimentalinvestigation," Powder Technology, vol. 376, pp.398-409,2020.doi:https://dx.doi.org/10.1016/j.powtec.2020.08.045
  • [20]K. Muhammad, T. Hayat, A. Alsaedi andB.Ahmad, "Melting heat transfer in squeezing flowof base fluid (water), nano fluid (CNTs+water) andhy-brid nano fluid (CNTs+CuO+water),"Journal of Thermal Analysis and Calorimetry, vol.143, pp. 1157-1174, 2020.doi:https://dx.doi.org/10.1007/s10973-020-09391-7
  • [21]M. Ghalambaz, A. Doostani, E. Izadpanahi andA.J. Chamkha, "Conjugate natural convection flowof Ag–MgO/water hybrid nano fluid in a squarecavity," Journal of Thermal Analysisand Calorimetry, vol. 139, no. 3, pp. 2321-2336,2020.
  • [22]U. Özdemir, B. Özbay, S. Veli and S.Zor,"Modeling adsorption of sodium dodecyl benzenesulfonate (SDBS) onto polyaniline (PANI) by usingmulti linear regression and artificial neural networks,"Chemical Engineering Journal, vol. 178, pp. 183-190,2011.
  • [23]F. Palazzesi, M. Calvaresi and F. Zerbetto,"A molecular dynamics investigation of structureand dynamics of SDS and SDBS micelles," Soft Matter, vol. 7, no. 19, pp. 9148-9156, 2011.doi:https://dx.doi.org/10.1039/C1SM05708A
  • [24]F. Jiang, W.C. Choy, X. Li, D. ZhangJ. Cheng,"Post‐treatment‐free solution‐̀ processed non‐stoi?chiometric NiOx nanoparticles for efficient hole‐transport layers of organic optoelectronic devices," Advances Materials, vol. 27, no. 18, pp. 2930-2937,2015. doi:https://dx.doi.org/10.1002/adma.201405391
  • [25]J.P. Holman, Experimental Methods for Engin-eers, 7th ed. McGraw-Hill, 2001.
  • [26]A.S. Ethiraj, P. Uttam, K. Varunkumar, K.F.Chong and G.A. Ali, "Photocatalytic performanceof a novel semiconductor nanocatalyst: Copperdoped nickel oxide for phenol degradation,"Materials Chemistry and Physics, vol. 242, 122520,2020. doi:https://dx.doi.org/10.1016/j.matchemphys.2019.122520
  • [27]G.A. Ali, "Photocatalytic performance of anovel semiconductor nanocatalyst: Copper dopednickel oxide for phenol degradation,"Materials Chemistry and Physics , vol. 242,122520, 2020.doi:https://dx.doi.org/10.1016/matchemphys.2019.122520
  • [28]M. Aliahmad, A. Rahdar and Y. Azizi,"Synthesis of Cu doped NiOnanoparticles by chemical method," Journal of Nanostructures, vol. 4, no.2, pp.145-152, 2014.doi:https://dx.doi.org/10.7508/JNS.2014.02.003
  • [29]E. Akman, "Enhanced photovoltaicperformance and stability of dye-sensitized solar cellsby utilizing manganese-doped ZnO photoanodewith europium compact layer," Journal of Molecular Liquids, vol. 317, 114223, 2020. doi:https://dx.doi.org/10.1016/j.molliq.2020.114223
  • [30]M. Yang, Z. Shi, J. Feng, H. Pu, G. Li, J.Zhou and Q. Zhang, "Copper doped nickel oxidetranspar-ent p-type conductive thin films depositedby pulsed plasma deposition," Thin Solid Films, vol.519, no.10, pp. 3021-3025, 2011.doi:https://dx.doi.org/10.1016/j.tsf.2010.12.009
  • [31] E. Akman, S. Akin, "Poly (N, N′‐bis‐4‐butyl phenyl‐N, N′‐bisphenyl) benzidine‐based interfacial passivation strategy promoting efficiency and operational stability of perovskite solar cells in regular architecture," Advanced Materials, vol. 33, no. 2, 2006087, 2021. doi:https://dx.doi.org/110.1002/adma.202006087
  • [32] E. Akman, S. Akin, T. Ozturk, B. Gulveren and S. Sonmezoglu, "Europium and terbium lanthanide ions co-doping in TiO2 photoanode to synchronously im-prove lightharvesting and opencircuit voltage for high-efficiency dye-sensitized solar cells," Solar Energy , vol. 202, pp. 227-237,2020. doi:https://dx.doi.org/10.1016/j.solener.2020.03.108
  • [33]T. Ozturk, B. Gulveren, M. Gulen, E. Akmanand S. Sonmezoglu, "An insight into titania nanopowders modifying with manganese ions: A promising route for highly efficient and stable photoelectro chemical solar cells," Solar Energy, vol.157,pp.47-57,2017.doi:https://dx.doi.org/10.1016/j.solener.2017.08.010
  • [34]E. Akman, A.E. Shalan, F. Sadegh and S.Akin, "Moisture-Resistant FAPbI3 perovskite solarcell with 22.25% pover conversin efficiency through pentafluorobenzyl phosphonic acid passivation," ChemSusChem, vol. 14, no. 4, pp. 1176-1183, 2021.doi:https://dx.doi.org/10.1002/cssc.202002707
  • [35] Y.A. Cengel and M.A. Boles, Thermodynamics: An Engineering Approach 6th Editon, The McGraw-Hill Companies, Inc., New York, 2007.
Gazi Mühendislik Bilimleri Dergisi-Cover
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2015
  • Yayıncı: Aydın Karapınar
Sayıdaki Diğer Makaleler

Sertleştirilmiş AISI H13 Takım Çeliğinin Delme Performansını İyileştirmek İçin Elektro Erozyon İşleme Parametrelerinin Taguchi Yöntemi Kullanılarak Modellenmesi ve Optimizasyonu

Erman ZURNACI, Engin NAS, Sıdıka YILDIRIM

Kumaş Polisaj Tezgâhında Gürültü ve Titreşim Azaltım Çalışması

Hüseyin DAL, Murat BAKLACI

Proje Yönetiminde Yapay Zekâ Tabanlı Paydaş Analizi Aracının Tasarımı

Hamdi Tolga KAHRAMAN, Funda ŞAHİNER, Gamzenur YILDIRIM

Karbon Elyaf Takviyeli Kompozitlerin İstifli Delinmesinde Delik Çıkış Hasarının Deneysel Araştırılması

Yakup TURGUT, Elif Özge KIRHASANOĞLU

Bakır Katkılı Nikel Oksit Sentezi ve Hibrit Nanoyağlayıcıların Kompresör Yağı Olarak Uygulaması

Mustafa AKKAYA, Erdi AKMAN

Sığ Kriyojenik İşlemin Sleipner Soğuk İş Takım Çeliğinin Metalurjik Özellikleri Üzerindeki Etkisinin Araştırılması

Onur ÖZBEK, Enes EL, Fuat KARA

Araç Rotalama Problemleri için Grafik İşlem Birimleri Üzerinde Yeni Bir Çözüm Gösterim Tekniği

Gürkan ÖZTÜRK, Erdener ÖZÇETİN

Dielektrik Malzemelerin Yüzeyleri için Islanabilirlik ve Buharlaşma Hızının Analizine Yönelik Ayrık Kosinüs Dönüşümü Tabanlı Bir Yaklaşım

Mustafa KARHAN

Derin Kriyojenik İşlemin Kalıntı Gerilme ve Kalıntı Östenit Üzerindeki Etkisinin Araştırılması

İlyas UYGUR, Nursel ALTAN ÖZBEK, Fuat KARA, Onur ÖZBEK

Su içeresindeki çubuğun stabilite analizi için diferansiyel dönüşüm yöntemi ve dunkerley formülünün uygulanması

Kanat Burak BOZDOĞAN, Farshid KHOSRAVI