Tekrar Doldurmalı Sürtünme Karıştırma Nokta Kaynaklı 6061-T6 Alüminyum Alaşımlı Bağlantıların Mikroyapı ve Mekanik Özelliklerinin İncelenmesi

Bu çalışmada, 6061 T6 alüminyum alaşımlarının katı hal kaynak yöntemlerinden biri olan tekrar doldurmalı sürtünme karıştırma nokta kaynağı (TSKNK) ile birleştirilebilmesi araştırılmıştır. AA6061 kaynak bağlantıları, takım dönme hızı (2000-2500 dev/dk), kaynak süresi(1-1.5sn), dalma derinliği (1.7-2.0-2.5mm) olmak üzere üç farklı kaynak parametreleri kullanılarak gerçekleştirilmiştir. Yapılan mikroyapısal inceleme sonucunda kaynak bölgesinde karıştırma bölgesi (KB), ısıdan etkilenen bölge (IEB), termo-mekanik etkili bölge (TMEB) ve temel malzeme (TM)olmak üzere 4 farklı bölge tespit edilmiştir. Varyans analizi (ANOVA) sonucunda dalma derinliği parametresinin % 96,76 katkı oranı ile çekme dayanımı üzerinde en etkili parametre olduğu tespit edilmiştir.

___

  • [1] Huda Z, Taib NI, Zaharinie T. Characterization of 2024-T3 an aerospace aluminum alloy. Materials Chemistry and Physics 2009;113(2-3): 515-517.
  • [2] Miller WS, Zhuang L, Bottema J, Wittebrood AJ, De Smet P, Haszler A, Vieregge A. Recent development in aluminum alloys for the automotive industry. Materials Science and Engineering 2000; A, 280: 37-49.
  • [3] Dursun T, Soutis C. Recent developments in advanced aircraft aluminum alloys. Materials and Design 2014; 56: 862-871.
  • [4] Mert Ş, Mert S. Sürtünme karıştırma nokta kaynak yönteminin incelenmesi. İleri Teknoloji Bilimleri Dergisi 2013; 2(1): 26-35.
  • [5] Suryanarayanan R, Sridhar VG. Experimental investigation on the influence of process parameters in Friction stir spot welded dissimilar aluminum alloys. Materials Today: Proceedings 2020; 27: 529–533.
  • [6] Shen Z, Yang X, Zhang Z, Cui L, Li T. Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints. Materials and design 2013; 44: 476-486.
  • [7] Li WY, Chu Q, Yang XW, Shen JJ, Vairis A, Wang WB. Microstructure and morphology evolution of probe less friction stir spot welded joints of aluminum alloy. Journal of Materials Processing Technology 2018; 252: 69-80.
  • [8] Kahraman B. Otomotiv endüstrisinde kullanılan 5754 alüminyum alaşımı sacların direnç nokta kaynağı (RSW) ve sürtünme karıştırma nokta kaynağı (FSSW) yöntemleri ile birleştirilmesi. Yüksek Lisans tezi, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, 2009.
  • [9] Hong SH, Sripichai K, Yu CS, Avery K, Pan J, Pan TY, Santella M. Failure modes of friction stir spot welds in lap-shear specimens of dissimilar advanced high strength steels under quasi-static and cyclic loading conditions. SAE International Journal of Materials and Manufacturing 2012; 5(2): 375-381.
  • [10] Ji S, Li Z, Wang Y, Ma L, Zhang L. Material flow behavior of refill friction stir spot welded LY12 aluminum alloy. High Temperature Materials and Processes 2017; 36(5): 495-504.
  • [11] Buffa G, Fratini L, Piacentini M. On the influence of tool path in friction stir spot welding of aluminum alloys. Journal of Materials Processing Technology 2008; 208: 309–317.
  • [12] Li Z, Ji S, Ma Y, Chai P, Yue Y, Gao S. Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy. The International Journal of Advanced Manufacturing Technology 2016; 86(5): 1925-1932.
  • [13] Xu Z, Li Z, Ji S, Zhang L. Refill friction stir spot welding of 5083-O aluminum alloy. Journal of Materials Science and Technology 2018; 34(5): 878-885.
  • [14] Tier MD, Rosendo TS, Santos JF, Huber N, Mazzaferro JA, Mazzaferro CP, Strohaecker TR. The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminum welds. Journal of Materials Processing Technology 2013; 213(6):, 997-1005.
  • [15] Nasiri AM, Shen Z, Hou JSC, Gerlich AP. Failure analysis of tool used in refill friction stir spot welding of Al 2099 alloy. Engineering Failure Analysis 2018; 84: 25–33.
  • [16] Kubit A, Wydrzynski D, Trzepiecinski T. Refill friction stir spot welding of 7075-T6 aluminum alloy single-lap joints with polymer sealant interlayer. Composite Structures 2018; 201: 389-397.
  • [17] Yang XW, Fu T, Li WY. Friction Stir Spot Welding: A review on joint macro and micro structure, property, and process modelling. Advances in Materials Science and Engineering. 2014; 1–11.
  • [18] Shena Z, Ding Y, Gopkalo O, Diak B, Gerlich AP. Effects of tool design on the microstructure and mechanical properties of refill friction stir spot welding of dissimilar Al alloys, Journal of Materials Processing Tech 2018; 252: 751–759.
  • [19] Shi Y, Yue Y, Zhang L, Ji S, Wang Y. Refill Friction Stir Spot Welding of 2198-T8 Aluminum Alloy. Trans Indian Inst Met 2018; 71(1): 139-145.
  • [20] Kwee I, Waele WD, Faes K. Weldability of high-strength aluminum alloy EN AW-7475-T761 sheets for aerospace applications, using refill friction stir spot welding. Welding in the World. 2019; 63: 1001-1011.
  • [21] Mishra RS, Ma ZY. Friction stir welding and processing. Materials Science and Engineering 2005; 50:1–78.
  • [22] Santos TG, Miranda RM, Vilaca P, Teixeira JP, Santos J. Microstructural mapping of friction stir welded AA 7075-T6 and AlMgSc alloys using electrical conductivity. Science and Technology of Welding and Joining 2011;16: 630–5.
  • [23] Kwee I, Faes K. Refill friction stir spot welding of EN AW- 7075 T6 to EN AW-7075 T6 sheets. Part 1: effect of the welding parameters on the microstructure, surface temperature and hardness of refill friction stir spot welds of EN AW- 075-T6. Welding and Cutting 2018; 17(5): 384–390.
  • [24] Jata K, Semiatin SL. Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys. Scripta Mater 2000; 43: 743-749.
  • [25] Sato YS, Kokawa H, Ikeda K, Enomoto M, Jogan S, Hashimoto T. Precipitation sequence in friction stir weld of 6063 aluminum during aging. Metall. and Mater. Trans. A 2001; 32: 3125-3130.
  • [26] Okamura H, Aota K, Ezumi M. Friction stir welding of aluminum alloy and application to structure. J. Japan Ins. L. Metals. 2000; 50: 166-172.
  • [27] Günay M, Yücel E. Application of Taguchi method for determining optimum surface roughness in turning of high-alloy white cast iron. Measurement. 2013; 46 (2): 913–919.