Çapraz Bağlı Kitosan Selüloz Grafen Kompozitinin Şişme Davranışlarının İncelenmesi

Kitosan/selüloz biyopolimer matrisi grafen ile katkılandıktan sonra basit ve pratik bir yolla çapraz bağlı üçlü absorban kompozit sistemi üretildi. Bu kapsamda üç farklı oranda çapraz bağlayıcı kullanılarak hazırlanan kompozitlerin sıvı absorplama özelliklerine pH’ın ve çapraz bağlayıcı miktarının etkisi şişme testleri ile araştırıldı. Çapraz bağlayıcı olarak glutaraldehit kullanıldı. Artan çapraz bağlayıcı miktarı ve pH ile birlikte şişme ve absorplanan sıvı oranının azaldığı gözlenmiştir. Ayrıca çapraz bağlayıcı miktarı kompozitin çekme dayanımını arttırırken bu artış çapraz bağlayıcı miktarı ile orantılı değildir. Hazırlanan kompozitin yapısal ve moleküler özellikleri FT-IR ve FESEM analizleri ile tespit edildi. Bu analizlerin sonucunda üç bileşenin birbiri içerisinde iyi bir biçimde dağıldığı, bu bileşenler arasında molekül içi ve moleküller arası bağlar ve sinerjik etki sebebiyle güçlü bir etkileşimin olduğu bunun sonucunda da kompozitin yeniden yapılandığı gösterildi.

___

  • [1] Alam MN, Christopher LP. Natural Cellulose-Chitosan Cross-Linked Superabsorbent Hydrogels with Superior Swelling Properties. ACS Sustainable Chemistry and Engineering 2018;6:8736–42. https://doi.org/10.1021/acssuschemeng.8b01062.
  • [2] Etty M, Auria SD, Shankar S, Salmieri S, Coutu J. New immobilization method of anti-PepD monoclonal antibodies for the detection of Listeria monocytogenes p60 protein – Part A : Optimization of a crosslinked film support based on chitosan and cellulose nanocrystals ( CNC ). Reactive and Functional Polymers 2020;146:104313. https://doi.org/10.1016/j.reactfunctpolym.2019.06.021.
  • [3] Omidi S, Pirhayati M, Kakanejadifard A. Co-delivery of doxorubicin and curcumin by a pH-sensitive , injectable , and in situ hydrogel composed of chitosan , graphene , and cellulose nanowhisker. Carbohydrate Polymers 2020;231:115745. https://doi.org/10.1016/j.carbpol.2019.115745.
  • [4] Hassan EA, Hassan ML, Abou-zeid RE, El-wakil NA. Novel nanofibrillated cellulose / chitosan nanoparticles nanocomposites films and their use for paper coating. Industrial Crops & Products 2016;93:219–26. https://doi.org/10.1016/j.indcrop.2015.12.006.
  • [5] Mohamed MF, Zhou X, Ibrahim HS, Ammar NS, Essawy HA. International Journal of Biological Macromolecules Grafting polymerization of acrylic acid onto chitosan-cellulose hybrid and application of the graft as highly ef fi cient ligand for elimination of water hardness : Validation of high selectivity in prese. International Journal of Biological Macromolecules 2018;116:530–6. https://doi.org/10.1016/j.ijbiomac.2018.05.062.
  • [6] Fan X, Li Y, Li X, Wu Y, Tang K, Liu J, et al. Injectable antibacterial cellulose nanofiber / chitosan aerogel with rapid shape recovery for noncompressible hemorrhage. International Journal of Biological Macromolecules 2019. https://doi.org/10.1016/j.ijbiomac.2019.10.273.
  • [7] Reddy N, Reddy R, Jiang Q. Crosslinking biopolymers for biomedical applications. Trends in Biotechnology 2015;33:362–9. https://doi.org/10.1016/j.tibtech.2015.03.008.
  • [8] Yigit O, Dikici B, Senocak TC, Ozdemir N. One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surface and Coatings Technology 2020;394:125858. https://doi.org/10.1016/j.surfcoat.2020.125858.
  • [9] Bodur S, Erarpat S, Bakırdere S. Fe3O4/reduced graphene oxide nanocomposites based dispersive solid phase microextraction for trace determination of profenofos in white rice flour samples. Journal of Food Composition and Analysis 2020;91. https://doi.org/10.1016/j.jfca.2020.103516.
  • [10] Harkins AL, Duri S, Kloth LC, Tran CD. Chitosan-cellulose composite for wound dressing material. Part 2. Antimicrobial activity, blood absorption ability, and biocompatibility. Journal of Biomedical Materials Research - Part B Applied Biomaterials 2014;102:1199–206. https://doi.org/10.1002/jbm.b.33103.
  • [11] Demitri C, De Benedictis VM, Madaghiele M, Corcione CE, Maffezzoli A. Nanostructured active chitosan-based films for food packaging applications: Effect of graphene stacks on mechanical properties. Measurement 2016;90:418–23. https://doi.org/https://doi.org/10.1016/j.measurement.2016.05.012.
  • [12] Jena G, Anandkumar B, Vanithakumari SC, George RP, Philip J, Amarendra G. Graphene oxide-chitosan-silver composite coating on Cu-Ni alloy with enhanced anticorrosive and antibacterial properties suitable for marine applications. Progress in Organic Coatings 2020;139:105444. https://doi.org/10.1016/j.porgcoat.2019.105444.
  • [13] Aguirre-Chagala YE, Pavón-Pérez LB, Altuzar V, Domínguez-Chávez JG, Muñoz-Aguirre S, Mendoza-Barrera C. Comparative Study of One-Step Cross-Linked Electrospun Chitosan-Based Membranes. Journal of Nanomaterials 2017;2017:1980714. https://doi.org/10.1155/2017/1980714.
  • [14] Zhong Z, Qin J, Ma J. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity. Materials Science and Engineering: C 2015;49:251–5. https://doi.org/https://doi.org/10.1016/j.msec.2015.01.020.
  • [15] Latifi N, Asgari M, Vali H, Mongeau L. A tissue-mimetic nano-fibrillar hybrid injectable hydrogel for potential soft tissue engineering applications. Scientific Reports 2018;8:1–18. https://doi.org/10.1038/s41598-017-18523-3.
  • [16] Alavi M, Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydrate Polymers 2020;227:115349. https://doi.org/10.1016/j.carbpol.2019.115349.
  • [17] Zhao L, Yang S, Yilihamu A, Ma Q, Shi M, Ouyang B, et al. Adsorptive decontamination of Cu2+-contaminated water and soil by carboxylated graphene oxide/chitosan/cellulose composite beads. Environmental Research 2019;179:108779. https://doi.org/10.1016/j.envres.2019.108779.
  • [18] Shahid-ul-Islam, Butola BS, Kumar A. Green chemistry based in-situ synthesis of silver nanoparticles for multifunctional finishing of chitosan polysaccharide modified cellulosic textile substrate. International Journal of Biological Macromolecules 2020;152:1135–45. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.10.202.
  • [19] Ozkan BC, Soganci T, Turhan H, Ak M. Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications. Electrochimica Acta 2019;295:1044–51. https://doi.org/10.1016/j.electacta.2018.11.032.
  • [20] Huang T, Shao YW, Zhang Q, Deng YF, Liang ZX, Guo FZ, et al. Chitosan-Cross-Linked Graphene Oxide/Carboxymethyl Cellulose Aerogel Globules with High Structure Stability in Liquid and Extremely High Adsorption Ability. ACS Sustainable Chemistry and Engineering 2019;7:8775–88. https://doi.org/10.1021/acssuschemeng.9b00691.
  • [21] El-Hefian EA, Nasef MM, Yahaya AH. The preparation and characterization of Chitosan / Poly (Vinyl Alcohol) blended films. E-Journal of Chemistry 2010;7:1212–9. https://doi.org/10.1155/2010/626235.
  • [22] Muthuchamy M, Govindan R, Shine K, Thangasamy V, Alharbi NS, Thillaichidambaram M, et al. Anti-biofilm investigation of graphene/chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumoniae. Carbohydrate Polymers 2020;230. https://doi.org/10.1016/j.carbpol.2019.115646.
  • [23] Yan L, Chen W. Preparation of chitosan / graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohydrate Polymers 2011;83:653–658. https://doi.org/10.1016/j.carbpol.2010.08.038.
  • [24] Rodríguez-González C, Martínez-Hernández AL, Castanõ VM, Kharissova O V., Ruoff RS, Velasco-Santos C. Polysaccharide nanocomposites reinforced with graphene oxide and keratin-grafted graphene oxide. Industrial and Engineering Chemistry Research 2020;51:3619–29. https://doi.org/10.1021/ie200742x.
  • [25] Karimi AR, Tarighatjoo M, Nikravesh G. 1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior. International Journal of Biological Macromolecules 2017;105:1088–95. https://doi.org/10.1016/j.ijbiomac.2017.07.128.
  • [26] Wang R, Shou D, Lv O, Kong Y, Deng L, Shen J. pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. International Journal of Biological Macromolecules 2017;103:248–53. https://doi.org/10.1016/j.ijbiomac.2017.05.064.
  • [27] Garnica-Palafox IM, Sánchez-Arévalo FM. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydrate Polymers 2016;151:1073–81. https://doi.org/10.1016/j.carbpol.2016.06.036.
  • [28] Guaresti O, García–Astrain C, Palomares T, Alonso–Varona A, Eceiza A, Gabilondo N. Synthesis and characterization of a biocompatible chitosan–based hydrogel cross–linked via ‘click’ chemistry for controlled drug release. International Journal of Biological Macromolecules 2017;102:1–9. https://doi.org/10.1016/j.ijbiomac.2017.04.003.
  • [29] Mokhothu TH, John MJ. Review on hygroscopic aging of cellulose fibres and their biocomposites. Carbohydrate Polymers 2015;131:337–54. https://doi.org/10.1016/j.carbpol.2015.06.027.