AZ91 Magnezyum Alaşımının PEO ve PVD Dublex Kaplama Yöntemleriyle CrN_NbN Kaplanarak Korozyon Özelliklerinin İyileştirilmesi

Otomobil, havacılık ve havacılık endüstrilerinde geleneksel mühendislik malzemelerinin geliştirilmesi ve uygulanması teknolojik altyapıyı desteklemiştir. Yüksek özgül mukavemete sahip magnezyum alaşımlarının kullanılması, özellikle ileri mühendislik uygulamalarında düşük ağırlıklı tasarımlar üretmek için çok önemlidir. Ancak magnezyum alaşımlarının korozyona karşı yüksek afinitesi kullanım alanını sınırlar. Son zamanlarda, fiziksel buhar biriktirme (PVD) ve plazma elektrolitik oksidasyon (PEO) kaplama sistemleri, metalik malzemelerin korozyon özelliklerini iyileştirmiştir. Bu çalışmada AZ91 magnezyum alaşımı önce PEO yöntemi ile kaplandıktan sonra PVD sisteminde iki farklı magnetron (Niobium ve Chromium) ile kaplanmıştır. AZ91 magnezyum alaşımının korozyon direncini artırmak için PEO ve CrN / NbN kaplamaların korozyon davranışına etkisi% 3,5 NaCl çözeltisinde araştırılmıştır. CrN / NbN çok katmanlı kaplamanın PEO üzerindeki korozyon direncinin AZ91 magnezyum alaşımındakinden daha iyi olduğu belirlendi.

Improving the Corrosion Properties of AZ91 Magnesium Alloy by Coating CrN/NbN with PEO and PVD Duplex Coating Methods

The development and application of traditional engineering materials in the automobile, aerospace, and aeronautics industries have supported the technological infrastructure. The usage of magnesium alloys with high specific strength is essential to produce low-weight designs, especially in advanced engineering applications. However, the high affinity of magnesium alloys against corrosion limits its usage area. Recently, physical vapor deposition (PVD) and plasma electrolytic oxidation (PEO) coating systems have improved metallic material's corrosion properties. In this study, AZ91 magnesium alloys have been coated firstly PEO method after that coated with two different magnetrons (Niobium and Chromium) in the PVD system. The effect of the PEO and CrN/NbN coatings on corrosion behavior was investigated in a 3.5% NaCl solution to increase the corrosion resistance of AZ91 magnesium alloy. It was determined that the corrosion resistance of the CrN/NbN multilayer coating onto PEO is better than that of the AZ91 magnesium alloy.

___

  • [1] Mathaudhu SN, Nyberg EA. Magnesium alloys in U.S. military applications: Past, current, and future solutions. Magnesium Technology, Springer, 2010; 27-32.
  • [2] Luo AA. Magnesium casting technology for structural applications. J. Magnes. Alloy. 2013; 2-22.
  • [3] Sillekens WH, Hort N. Magnesium and magnesium alloys. Structural Materials and Processes in Transportation. 2013; 113-150.
  • [4] Dziubińska A, Gontarzc A, Dziubiński M, Barszcz M. The forming of magnesium alloy forgings for aircraft and automotive applications, Adv. Sci. Technol. Res. J., 2016; 158–168.
  • [5] Danford MD, Mendrek MJ, Mitchell ML, Torres PD. The corrosion protection of magnesium alloy AZ31B. 1997.
  • [6] Kutz M. Mechanical engineers handbook. Volume 1: Materials and engineering mechanics. 2015.
  • [7] Dong H. Surface engineering of light alloys: Aluminium, magnesium, and titanium alloys. 2010.
  • [8] Hussein RO, Nie X, Northwood DO. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing, Electrochim. Acta., 2013; 111-119.
  • [9] Cheng Y, Wu F, Matykina E, Skeldon P, Thompson GE. The influences of microdischarge types and silicate on the morphologies and phase compositions of plasma electrolytic oxidation coatings on Zircaloy-2, Corros. Sci. 2012; 307-315.
  • [10] Dwivedi DK. Adhesive wear behaviour of cast aluminium–silicon alloys: Overview. Materials & Design (1980-2015) 2010; 2517-2531.
  • [11] Dehnavi V, Luan BL, Shoesmith DW, Liu XY, Rohani S. Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior. Surf. Coatings Technol., 2013; 100-107.
  • [12] Dehnavi V, Prof S, Rohani-Prof S, Shoesmith DW. Surface modification of aluminum alloys by plasma electrolytic oxidation. Chemical and Biochemical Engineering. 2014.
  • [13] Gupta P, Tenhundfeld G, Daigle EO, Ryabkov D. Electrolytic plasma technology: Science and engineering-An overview. Surf. Coatings Technol., 2007; 8746–8760.
  • [14] Blawert C, Bala Srinivasan P. Plasma electrolytic oxidation treatment of magnesium alloys. Surf. Eng. Light Alloy. Alum. Magnes. Titan. Alloy, 2010; 155–183.
  • [15] Liang CJ. In-situ impedance spectroscopy studies of the plasma electrolytic oxidation coating process. 2013; 234.
  • [16] Alshmri F, Atkinson HV, Hainsworth SV, Haidon C, Lawes SDA. Dry sliding wear of aluminium-high silicon hypereutectic alloys. Wear, 2014; 106-116.
  • [17] Xu F, Xia Y, Li G. The mechanism of PEO process on Al-Si alloys with the bulk primary silicon, Appl. Surf. Sci., 2009; 9531-9538.
  • [18] Hoche H, Groß S, Troßmann T, Schmidt J, Oechsner M. PVD coating and substrate pretreatment concepts for magnesium alloys by multinary coatings based on Ti(X)N. Surf. Coatings Technol., 2013.
  • [19] Mattox DMM. Handbook of physical vapor deposition (PVD) processing film formation, adhesion, surface preparation and contamination control, 1998.
  • [20]Gennardo D. Design, construction, and optimization of a magnetron sputtering system for urania deposition. 2010.
  • [21] O'Hanlon JF. A user's guide to vacuum technology. John Wiley & Sons, 2005.
  • [22] Alfonso JE, Buitrago J, Torres J, Santos B, Marco JF. Crystallographic structure and surface composition of NbNx thin films grown by RF magnetron sputtering. Microelectronics J., 2008; 1327–1328.
  • [23 Martin J, Nominé AV, Stef J, Nominé A, Zou JX, Henrion G, Grosdidier T. The influence of metallurgical state of substrate on the efficiency of plasma electrolytic oxidation (PEO) process on magnesium alloy. Mater. Des., 2019; 107859.
  • [24]Hafizi A, Rahimpour MR. Inhibiting Fe–Al spinel formation on a narrowed mesopore-sized MgAl2O4 support as a novel catalyst for H2 production in chemical looping technology. Catalysts, 2018; 27.
  • [25]Nordin M, Larsson M, Hogmark S. Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide. Surf. Coatings Technol., 1998; 234-241.
  • [26] Lamastra FR, Leonardi F, Montanari R, Casadei F, Valente T, Gusmano G. X-ray residual stress analysis on CrN/Cr/CrN multilayer PVD coatings deposited on different steel substrates. Surf. Coatings Technol., 2006; 6172–6175.
  • [27] Khlifi K, Ben Cheikh Larbi A. Investigation of adhesion of PVD coatings using various approaches, Surf. Eng., 2013; 555-560.
  • [28] Li XY, Akiyama E, Habazaki H, Kawashima A, Asami K, Hashimoto K. An XPS study of passive films on sputter-deposited Cr-Nb alloys in 12 M HCl solution. Corros. Sci., 1998; 821-838.
  • [29] Song G, Atrens A, Wu X, Zhang B. Corrosion behaviour of AZ21, AZ501 and AZ91 in Sodium Chloride. Corros. Sci., 1998; 1769-1791.