Kocakızıl (Akşehir-Konya) doleritinin petrografik ve jeokimyasal özellikleri

Sultandağı'nda (Akşehir-Konya) Triyas (?) yaşlı dolerit dayk veya silleri başlıca plajiyoklaz (An58-67), ojit, az amfibol ve opak minerallerinden oluşmaktadır. Doleritik dokunun egemen olduğu kayaçlarda serisitleşme ve kloritleşme de izlenebilmektedir. Çeşitli jeokimyasal ayırtman diyagramlar yardımı ile yarıalkali magmatik kayaçların sınırlı kimyasal bileşim gösteren levha içi toleyitleri olduğu belirlenmiştir. Nadir toprak element (NTE) ve okyanus ortası sırtı bazaltlara (OOSB) oranlanmış bazı iz element diyagramlarında örneklerin uyumluluğu ve Zr'un bazı ana ve iz elementlerle olan çizgisel ilişkisi bunların aynı kökene sahip olduğunu ve safhalı kristalleşmenin onların petrolojik tarihçelerinde önemli bir rol oynadığını göstermektedir. Örneklerin mineral kimyası, iz element ve NTE içeriklerine dayanarak doleritlerin, Torid-Anatolid platformunun yüksek oranda yayılıp açılması ve Neotetis okyanusunun gelişimi ile ilişkili olarak muhtemelen zenginleşmiş bir mantodan, yüksek derecelerdeki kısmi ergime ile türediği ve olivin ve/veya piroksen farklılaşmasına uğradığı ileri sürülmüştür.

Petrographical and geochemical characteristics of the Kocakızıl (Akşehir-Konya) dolerites

Triassic dolerite dykes or sills at Sultandağı (Akşehir, Konya) area are mainly made up of plagioclase (An58-67), augite, rare amphibole, and opaque iron ore. Sericitisation and chloritisation exist in the samples, in which doleritic texture is dominant. By some geochemical discriminating diagrams, the subalkaline magmatic rocks were determined to be within-plate tholeiites with restricted chemical composition. Compatibility of the samples in the NTE and OOSB-normalized some trace element diagrams as well as existence of linear relation of Zr with some major and trace elements, show that they are of co-genetic and fractional crystallization (e.g. pyroxene and/or olivine) process could play an important role in their petrological history. Based on mineral chemistry, trace element and NTE contents of the samples, the dolerites were suggested to be derived from possibly an enriched mantle, by high degree partial melting, and undergone fractional crystallization of olivine and/or pyroxene in relation with higher rates of extension and rifting of Tauride—Anatolide platform and consequently development of Neotethyan ocean.

___

  • 1. Ketin, İ. (1966). Anadolu'nun tektonik birlikleri. MTA Der. , 66.
  • 2. Özgül, N. (1976). Torosların bazı temel jeoloji özellikleri. TJK Bült., 19/1, 65-78.
  • 3. Demirkol, C. (1977). Yalvaç-Akşehir dolayının jeolojisi. Doçentlik Tezi, KSÜ, YerBilimleri Böl., Konya (yayınlanmamış).
  • 4. Eren, Y. (1990). Engilli (Akşehir) ve Bağkonak (Yalvaç) Köyleri Arasında Sultandağları Masifi'nin tektonik Özellikleri. Türkiye» Jeoloji Bülteni, 33, 1, 39 -49.
  • 5. Haude, H. (1968). Zur Geologie des mittleren Sultandağ sudwestlich von Akşehir (Turkei).Munster. Doktora Tezi (basılmamış).
  • 6. Drop, G.T.R. (1987). A general equation for estimating $Fe^{3+}$ concentration in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria, Mineralogical Magazine, 51, 431-450.
  • 7. Morimoto, N. (1988). Nomenclature of pyroxenes. Mineralagocial Magazine, 52, pp. 535-550.
  • 8. Pearce, J.A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C. J. Hawkesworth (eds), Continental basalts and mantle xenoliths. Shiva, Nantwich, 230-249.
  • 9. Winchester, J.A.and Floyd, P.A. (1977). Geochemical distributions of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.
  • 10. Irvine, T.N. and Baragar, W.R.A. (1977), A guide to the chemical classification of the common rocks. Canadian Journal of Earth Science,8,523-48.
  • 11. Leterrier,J., Maury, R., Thonon P., Girard D. and Marchal, N. (1982). Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet Sci Lett 59: 139-154.
  • 12. Elthon, D. Stewart, M.and Ross, K.M (1992). Compositional trends of minerals in oceanic cumulates: Journal of Geophysical Research, 97, 189-199.
  • 13. Beard, J.S. (1986). Characteristic mineralogy of arc related cumulate gabbros: Implications for the tectonic setting of gabbroic plutons and for andesite genesis. Geology, 14, 848-851,
  • 14. Wood, D.A., Joron, J.L. and Treuil, M. (1979). A re-appraisal of the use of trace elements to classify and discriminate betwen magma series erupted in different tectonic settings. Earth Plan, Sci. Lett., 45, 326-36.
  • 15. Gill, J.B. (1981). Orogenic andesites and plate tectonics. Springer, Berlin, Heidelberg New York.
  • 16. Gill, J.B. (1987). Early geochemical evolution of an oceanic island arc and back-arc: Fiji and the South Fiji basin. J Geol, 95, 589-615.
  • 17. Pearce, J. A. (1982). Trace element characteristics of lavas from destructive plate boundaries. In: R.S. Thorpe (ed.) Andesites. Wiley, New York, pp 525-548.
  • 18. Hofmann, A.W. (1988). Chemical diferentiation of the Earth. The relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90, 297-314.
  • 19. Wood, D.A. (1978). Major and trace element variations in the Tertiary lavas of Eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J Petrol ,19/3, 393-436.
  • 20. Lightfoot, P. and Hawkesworth, C.J. (1988). Origin of Deccan Trap lavas: evidence from combined trace element and Sr-, Nd- and Pb- isotope studies. Earth Planet Sci Lett, 91, 89-104.
  • 21. Cox, K.G. and Hawkesworth., C.J. (1985). Geochemical stratigraphy of the Deccan Traps at Mahabaleshwar, Western Ghats, India, with implications for open system magmatic processes. J Petrol, 26/2, 355±377.
  • 22. Tormey, D.R. Frey. F.A. and Lopez-Escobar, L.(1995). Geochemistry of the active Azufre- Planchon-Peteroa volcanic complex, Chile (35° 15 S): evidence for multiple sources and processes in a Cordilleran arc magmatic system. J Petrol, 36/2, 265-298.
  • 23. Dupuy, C. Dostal, J. Marcelot, G. Bougault, H, Joron, J.L. and Treuil, M. (1982). Geochemistry of basalts from central and southern New- Hebrides arc: implication for their source rock composition. Earth Planet Sci Lett, 60, 207-225.
  • 24. X. Boespflug, Evolution geodynamique et geochimique des bassins arrie re-arcs. Exemples des bassins d'Okinawa, de Lau, et Nord-Fijien. Doctoral Thesis, Brest University, 354 pp, 1990,
  • 25. Hofmann, A.W. (1988). Chemical differentiation of the Earth. The relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90, 297-314.
  • 26. Taylor, S.R. and McLennan, S.M. (1985). The continental crust: its composition and evolution. Blackwell, Oxford.
  • 27. Green, T.H. (1980). Island arc and continent building magmatism: a review of petrogenetic models based on experimental petrology and geochemistry. Tectonophysics, 63, 367-85.
  • 28. Marjorie, W. (1989). Igneous petrogenesis, Unwin Hyman Ltd, London, 466pp.
  • 29. Şengör, A.M.C. and Yılmaz, Y. (1981). Tethyan evolution of Turkey: A plate tectonic approach, Tectonophysics, 75, 3-4, 181-190.
  • 30. Baker, B.H. (1987). Outline of the petrology of the Kenya rift alkaline province. In Alkaline igneous rocks, J.G. Fitton and B.G. J. Upton,(eds). Geo.Soc.Spec.Pub., 30, 293-311.
  • 31. Baker, B.H. Mohr, P.A. Williams, L.A.J. (1972). Geology of the Eastern Rift System of Africa, Geo.Soc.Am., Sp.Pub., 186, 67pp.
  • 32. Jaques, A.L. and Green, D.H. (1980). Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts. Cont.Min.Pet., 73, 287-310.
  • 33. Yoder, H.S. (1976). Generation of basaltic magma. Nat.Acad.Sci. (USA), Washington, DC, USA.