Atıksulardaki sülfat konsantrasyonunun yukarı akışlı anaerobik çamur yatağı sistem verimine etkisi

Bu çalışmada, atıksudaki farklı sülfat konsantrasyonlarının sistem verimine etkilerini araştırmak için pilot ölçekli bir yukarı akışjı havasız çamur yatağı (YAHÇY) kullanılmıştır. 40 günlük alıştırma devresinin ardından YAHÇY, 83 gün süresince mezofilik-anaerobik şartlarda, 2 günlük hidrolik bekleme süresinde işletmeye alınmıştır. Sistem verimini araştırmak için belirli aralıklarla sülfat konsantrasyonu arttırılmıştır. Sülfat konsantrasyonu 300 mg/L'nin altındayken % 90'm üzerinde KOİ ve % 30-40 oranında sülfat verimi sağlanmıştır. 600 mg/L sülfat konsantrasyonunda, KOİ verimi % 60-80 arasında kalmıştır. 1500 mg/L'nin üzerindeki sülfat konsantrasyonu ile yapılan çalışmalarda, KOİ giderimi (< % 60) ve metan üretiminin (< 1,2 L) etkili bir şekilde azaldığı belirlenmiştir. Aynı zamanda giderilen KOİ'nin metana dönüşüm oranının 0.395'ten 0.200 L CH/g KOİ(gid.) değerine düştüğü kaydedildi. KOİ/SO oranının 12'nin altına düşmesi durumunda ise 4 4 üretilen metan miktarı % 50 azalmıştır.

Effect of sulfate concentrations in wastewaters on up-flow anaerobic sludge bed reactor system performance

In this study, an Up-flow anaerobic sludge bed (UASB) reactor was used to investigate effects of sulfate concentrations in wastewater on the system performance. Following the start-up period of first 40 days, UASB reactor was operated in mesophilic-anaerobic conditions during the 83 days with a constant hydraulic retention time of 2 days. Sulfate concentration was gradually increased to investigate its effect on the performance. It has been found that over 90% COD and 30-40% sulfate removal could be obtained when sulfate concentration was less than 300 mg/1. COD removal performance decreased to 60-80 % with sulfate concentration of 600 mg/1. In the high sulfate concentrations over 1500 mg/1, methane yield decreased considerably and the rate of COD removal (

___

  • 1. Yoda, M., Kitagawa, M., and Miyaji, Y., (1987). Long term competition between sulfate-reducing and methane-producing bacteria for acetate in anaerobic biofilm. Water Research, 21(12),1547- 1556.
  • 2. Lettinga G., Hulshoffpol, L.W., (1991) UASB- Process design for various types of wastewaters, Water Sci. Tech., 24, 8, 87-107.
  • 3. Yamaguchi, T., Harada, H., Hisano, T.,Yamazaki, S. and Tseng, C.I. (1999) Process behavior of UASB reactor treating a wastewater containing high strength sulfate. Wat.Res.33(l4), 3182-3190.
  • 4. Khanal, S.K., and Huang, J.C., (2003). ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Res. 37, 2053-2062.
  • 5. Hilton B. L. and Oleszkiewicz J. A. (1987). Anaerobic treatment of high strength, high sulfate waste. In 41st Purdue University Industrial Waste Conference Proceedings, Purdue University. Lewis Publishers, Chelsea, MI, 156-166.
  • 6. Mulder A. (1984) The effects of high sulfate concentration on the methane fermentation, Innovation in Biotechnology, eds. E. H. Houwink and R. R. vander Meer, 133-143. Elsevier, Amsterdam.
  • 7. Rinzema A. and Lettinga G. (1988). The effect of sulphide on the anaerobic degradation of propionate. Environ. Technol. Lett. 9, 83-88.
  • 8. APHA; AWWA; WPCF (1985). Standard Methods for the Examination of Water and Wastewater, 16 th Ed.
  • 9. Sam-Soon, P., Loewenthal, R.E., Wentzel, M.C. and Marais G.R.,(1991). Effects of sulfate on pelletisation in the UASB system with glucose as substrate. Water S.A. 17,47-56.
  • 10. Zhou D., Chen Y. and Meng X. (1991) A study of 2 anaerobic treatment for highly concentrated SO " + 4 Ca -rich organic wastewater and purified water reclamation. Water Sci. Tech. 24,123-132.
  • 11. Zhou G.M. and Fang H.H.P., (1998). Competition between methanogenesis and sulfidogenesis in anaerobic wastewater treatment. Water Sci. Technol, 38 (8-9), 317-24.
  • 12. Visser A., Hulshoff Pol L.W., Lettinga G. (1996). Competition of methanogenic and sulfidogenic bacteria. Water Sci Technol, 33(3):99-110.
  • 13. Harada H., Vemura S. and Momonoi K., (1994). Interaction between sulphate reducing bacteria and methane producing bacteria in a UASB reactor fed with low strength wastes containing different levels of sulphate. Water Res., 28(2):355-67.
  • 14. Shayegan, J., Ghavipanjeh, F. and Mirjafari, P., (2005) The effect of influent COD and upward flow velocity on the behaviour of sulphate-reducing bacteria. Process Biochemistry 40,2305-2310
  • 15. Lens P.N.L, Visser, A., Janssen, A.J.H., Hulshoff Pol, L.W., Lettinga, G. (1998). Biotechnological treatment of sulfate-rich wastewaters. Crit. Rev. Environ. Sci. Technol, 28(1):41-88.
  • 16. Koster I.W., Rinzema A., De Vegt A.L., Lettinga G. (1986). Sulfide inhibition of the methanogenic activity of granular sludge at various pH-levels. Water Res., 20(12): 1561-7.
  • 17. Lens P.N.L., Kuenen J.G. (2001). The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Sci. Technol, 44(8):5 7-66.
  • 18. Reis, M.A.M., Goncalves, L.M.D., Carronda, M.J.T. (1988). Sulfate removal in acidogenic phase anaerobic digestion. Environ. Technol, 9,775-84.
  • 19. Alphenaar, P.A., Visser, A. and Lettinga, G. (1993). The effect of liquid upward velocity and hydraulic retention time on granulation in UASB reactor treating wastewater with high sulphate content. Bioresour Technol, 43,249-58.
  • 20. Russo, S. L. and Dold, P. L. (1989). Sludge character and role of sulphate in UASB system treating a paper plant effluent. Water Sci. Tech. 21, 121-132