Alkaline phosphatase levels of murine pre-osteoblastic cells on anodized and annealed titanium surfaces

Purpose This study aimed to evaluate the initial adhesion morphology and alkaline phosphatase (ALP) activity of murine pre-osteoblastic MC3T3-E1 cells cultured on anatase/rutile mixed-phase TiO2 thin films with photocatalytical activity with previously confirmed antibacterial properties. Materials and methods Anatase/rutile mixed-phase TiO2 thin films fabricated by anodization and annealing of cpTi were used to culture MC3T3-E1 cells to evaluate the initial cellular adhesion morphology and ALP activity in vitro. Results Compared with MC3T3-E1 cells cultured on cpTi substrates and the control group, cells cultured on anatase/rutile mixed-phase TiO2 thin films exhibited similar ALP levels after cell culture day 9. Conclusion Anodizing and annealing processes fabricate multifunctional surfaces on cpTi with improved osteogenic properties for implants.

___

  • 1. Grotberg J, Hamlekhan A, Butt A, Patel S, Royhman D, Shokuhfar T, Sukotjo C, Takoudis C, Mathew MT. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V. Mater Sci Eng C Mater Biol Appl 2016; 59: 677-89. 2. Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review. Clin Oral Implants Res 2009; 20: 172-84. 3. Anselme K, Bigerelle M, Noel B, Iost A, Hardouin P. Effect of grooved titanium substratum on human osteoblastic cell growth. J Biomed Mater Res 2002; 60: 529-40. 4. Cooper LF, Masuda T, Yliheikkila PK, Felton DA. Generalizations regarding the process and phenomenon of osseointegration. Part II. In vitro studies. Int J Oral Maxillofac Implants 1998; 13: 163-74. 5. Nishimoto SK, Nishimoto M, Park SW, Lee KM, Kim HS, Koh JT, Ong JL, Liu Y, Yang Y. The effect of titanium surface roughening on protein absorption, cell attachment, and cell spreading. Int J Oral Maxillofac Implants 2008; 23: 675-80. 6. Stevens MM, George JH. Exploring and engineering the cell surface interface. Science 2005; 310: 1135-8. 7. Lin YH, Peng PW, Ou KL. The effect of titanium with electrochemical anodization on the response of the adherent osteoblast-like cell. Implant Dent 2012; 21: 344-9. 8. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238: 37-8. 9. Yeniyol S, Mutlu I, He Z, Yuksel B, Boylan RJ, Urgen M, Karabuda ZC, Basegmez C, Ricci JL. Photocatalytical antibacterial activity of mixed-phase TiO2 nanocomposite thin films against aggregatibacter actinomycetemcomitans. Biomed Res Int 2015; 2015: 705871. 10. Yu J, Zhao X, Zhao Q. Photocatalytic activity of nanometer tio2 thin films prepared by the sol–gel method. Mater Chem Phys 2001; 69: 25-9. 11. Shieh KJ, Li M, Lee YH, Sheu SD, Liu YT, Wang YC. Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light. Nanomedicine 2006; 2: 121-6. 12. Byun D, Jin Y, Kim B, Kee Lee J, Park D. Photocatalytic TiO2 deposition by chemical vapor deposition. J Hazard Mater 2000; 73: 199-206. 13. Kemell M, Pore V, Ritala M, Leskela M, Linden M. Atomic layer deposition in nanometer-level replication of cellulosic substances and preparation of photocatalytic tio2/cellulose composites. J Am Chem Soc 2005; 127: 14178-9. 14. Mandl S, Sader R, Thorwarth G, Krause D, Zeilhofer HF, Horch HH, Rauschenbach B. Investigation on plasma immersion ion implantation treated medical implants. Biomol Eng 2002; 19: 129-32. 15. Kepenek B, Öncel S, Çakır AF, Ürgen M. Photoactive tio2 coatings on metal substrates by cathodic arc deposition technique. Euro Ceramics 2004; 264-268: 549-52. 16. Lee K, Kim D, Roy P, Paramasivam I, Birajdar BI, Spiecker E, Schmuki P. Anodic formation of thick anatase TiO2 mesosponge layers for high-efficiency photocatalysis. J Am Chem Soc 2010; 132: 1478-9. 17. Sharma U, Pal D, Prasad R. Alkaline phosphatase: An overview. Indian J Clin Biochem 2014; 29: 269-78. 18. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000; 21: 1803-10. 19. Blake DM, Maness PC, Huang Z, Wolfrum EJ, Huang J, Jacoby WA. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods 1999; 28: 1-50. 20. Lee SY, Matsuno R, Ishihara K, Takai M. Electrical transport ability of nanostructured potassium-doped titanium oxide film. APEX 2011; 4: 025803. 21. Cai K, Lai M, Yang W, Hu R, Xin R, Liu Q, Sung KL. Surface engineering of titanium with potassium hydroxide and its effects on the growth behavior of mesenchymal stem cells. Acta Biomater 2010; 6: 2314-21. 22. Nishiguchi S, Kato H, Fujita H, Oka M, Kim HM, Kokubo T, Nakamura T. Titanium metals form direct bonding to bone after alkali and heat treatments. Biomaterials 2001; 22: 2525-33. 23. Ohtsuki C, Iida H, Hayakawa S, Osaka A. Bioactivity of titanium treated with hydrogen peroxide solutions containing metal chlorides. J Biomed Mater Res 1997; 35: 39-47. 24. Wei M, Kimb HM, Kokubo T, Evans JH. Optimising the bioactivity of alkaline-treated titanium alloy. Mater Sci Eng C 2002; 20: 125-134. 25. Liang F ZL, Wang K. Apatite formation on porous titanium by alkali and heat-treatment. Surf Coat Technol 2003; 165: 133-9. 26. Tas AC, Bhaduri SB. Rapid coating of ti6al4v at room temperature with a calcium phosphate solution similar to 10× simulated body fluid. J Mater Res 2004; 19: 2742-9. 27. Tanaka S, Tobimatsu H, Maruyama Y, Tanaki T, Jerkiewicz G. Preparation and characterization of microporous layers on titanium. ACS Appl Mater Interfaces 2009; 1: 2312-9. 28. Faghihi S, Azari F, Li H, Bateni MR, Szpunar JA, Vali H, Tabrizian M. The significance of crystallographic texture of titanium alloy substrates on pre-osteoblast responses. Biomaterials 2006; 27: 3532-9. 29. Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC. Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 2001; 16: 3331-4. 30. Oh S, Daraio C, Chen LH, Pisanic TR, Finones RR, Jin S. Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 2006; 78: 97-103. 31. Yu WQ, Jiang XQ, Zhang FQ, Xu L. The effect of anatase tio2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res A 2010; 94: 1012-22. 32. Lockman Z, Ismail S, Sreekantan S, Schmidt-Mende L, Macmanus-Driscoll JL. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath. Nanotechnology 2010; 21: 055601. 33. Mohan L, Anandan C, Rajendran N. Electrochemical behavior and effect of heat treatment on morphology, crystalline structure of self-organized tio2 nanotube arrays on ti-6al-7nb for biomedical applications. Mater Sci Eng C Mater Biol Appl 2015; 50: 394-401. 34. Ko HC, Han JS, Bachle M, Jang JH, Shin SW, Kim DJ. Initial osteoblast-like cell response to pure titanium and zirconia/alumina ceramics. Dent Mater 2007; 23: 1349-55.