EFFECT OF WELDING PARAMETERS ON WEAR PERFORMANCE OF BORON COATING MADE WITH PTA

It is inevitable that wear on the surfaces occur when especially metal surfaces contact each other. One of the most crucial problems among surface machining is wear problem. In this study, surface of 316 sainless steel was coated with boron via plasm arc method. 160, 165 and 170 current values were utilized as welding parameters. The effect of hard structures occurring over the coating region on substrate wear resistance was investigated when welding parameters used in the study started to solidify after coating. The wear process was carried out on the pin ten disc device using a fixed load (10 N) and sliding speed (0.4 m / s) and at different sliding distances (250 m, 500 m and 1000 m) using stalked grit sandpaper. After the wear process, the characterization of the wear zone was conducted determining it with the help of SEM-EDX. It was determined from optical microscope and SEM analysis that the coating area consisted of cellular, branched and leaf-shaped dendritics; and eutectic structures were formed between these dendritics. As a result of EDX taken from coated region, Fe, B and Cr elements were found. While the highest weight loss occurred in 316 satinless steel with 45 mg, the lowest weight loss was obtained from Boron2 sample with 27 mg. After wear test, low mass loss in samples coated with Boron shows that substrate sample wear resistance increased.

___

  • [1] L. Bourithis L., G.D. Papadimitriou D.G.(2009). The effect of microstructure and wear conditions on the wear resistance of steel metal matrix composites fabricated with PTA alloying technique. Wear 266,1155–1164, doi:10.1016/j.wear.2009.03.032 [2] Yuan-Fu Liu, Zhi-Cheng Feng, Fei Pu, Zhi-Ying Xia, Guang-Bao Sun, Long-Hua Zhang, Chen-Xiao Shi, Zheng Zhang. (2018). Microstructure and dry-sliding wear properties of TiC/CaF2/γ-Ni selflubricating wear-resistant composite coating produced by co-axial powder feeding plasma transferred arc (PTA) cladding process. Surface & Coatings Technology 345, 61–69, https://doi.org/10.1016/j.surfcoat.2018.04.003 [3] Fernandes F., Cavaleiro A., Loureiro A. (2012). Oxidation behavior of Ni-based coatings deposited by PTA on gray cast iron, Surface & Coatings Technology 207, 196–203, doi:10.1016/j.surfcoat.2012.06.070 [4] Apay S., Gülenç B. (2013). Kobalt Bazlı Tozların PTA Yöntemiyle Düşük Karbonlu Çelik Üzerine Kaplanması ve Kaplama Bölgesinin İncelenmesi, Düzce Üniversitesi Bilim ve Teknoloji Dergisi 1.1: 77-87. [5] Buytoz S. (2004). AISI 4340 Çeliğinin Nitrürasyon ve GTA Kaynak Yöntemi ile Yüzey Modifikasyonu İşlemleri Sonrası Mekaniksel Davranışlarının Araştırılması, Doktora Tezi, Fırat Üniversitesi, Elazığ-Türkiye. [6] Hou, Q. Y., J. S. Gao, F. Zhou (2005). Microstructure and wear characteristics of cobalt-based alloy deposited by plasma transferred arc weld surfacing. Surface and Coatings Technology 194.2: 238-243. [7] Bourithis, E., A. Tazedakis A., Papadimitriou G. (2002). A study on the surface treatment of “Calmax” tool steel by a plasma transferred arc (PTA) process. Journal of Materials Processing Technology 128.1: 169-177. [8] Deuis, R. L., J. M. Yellup J.M., C. Subramanian C. (1998). Metal-matrix composite coatings by PTA surfacing. Composites science and technology 58.2: 299-309. [9] Kucita P., Wang S.C., Li W.S., Cook R.B., Starink M.J. (2019). The effects of substrate dilution on the microstructure and wear resistance of PTA Cu-Al-Fe aluminium bronze coatings, Wear 440-441, 203102, https://doi.org/10.1016/j.wear.2019.203102 [10] Deng X., Zhang G., Wang T., Ren S., Shi Y., Bai Z., Cao Q. (2019). Microstructure and oxidation resistance of a multiphase Mo-Si-B ceramic coating on Mo substrates deposited by a plasma transferred arc process, Ceramics International 45, 415–423, https://doi.org/10.1016/j.ceramint.2018.09.182 [11] Dai W., Miao Y., Li J., Zheng Z., Zeng D., Huang Q. (2016). Investigation on morphology and micro-hardness characteristic of composite coatings reinforced by PTA copper alloying on nodular cast iron, Journal of Alloys and Compounds 689, 680-692, http://dx.doi.org/10.1016/j.jallcom.2016.08.007 [12] Deng X., Zhang G., Wang T., Ren S., Li Z., Song P., Shi Y. (2019). Characterization and oxidation resistance of B-modified Mo3Si coating on Mo substrate, Journal of Alloys and Compounds 807, 151693, https://doi.org/10.1016/j.jallcom.2019.151693 [13] Yıldız T., Gür K.A. (2011). PTA Yöntemiyle Üretilen AISI 1030 Çelik Yüzeyine FeMo Kaplamada N2 Gazının Kaplama Mikroyapısına Etkisi" 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, sayfa: 92-98, Elazığ, Turkey [14] Hou Q.Y., He Y.Z., Zhang Q.A., Gao J.S. (2007). Influence of molybdenum on the microstructure and wear resistance of nickel-based alloy coating obtained by plasma transferred arc process." Materials and Design 28, 1982–1987 [15] Liu Y. F., Mu J. S., Xu X. Y., Yang S. Z. (2007). Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process. Materials Science and Engineering: A, 458(1), 366-370. [16] Tosun, G. (2011). 1010 Çeliğinin Ni-WC Tozları ile PTA Yöntemi Kullanılarak Kaplanması." 6 th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey 126-131 [17] Acevedo-D_avila J.L., Mu~noz-Arroyo R., Hdz-García H.M., Martinez-Enriquez A.I., Alvarez-Vera M., Hern_andez-García F.A. (2017) Cobalt-based PTA coatings, effects of addition of TiC nanoparticles, Vacuum 143, 14-22, http://dx.doi.org/10.1016/j.vacuum.2017.05.033 [18] Mehmet AY M.G., Çelik N.O. (2019) Inspection of nickel-based boron carbide PTA coatings on AISI 4140 steel, Industrial Lubrication and Tribology, 71/4, 548–556, DOI 10.1108/ILT-06-2018-0224. [19] Er Ü., Bilal Par B. (2004). Bor Yayınımıyla Yüzeyi Sertleştirilmiş AISI 1030 ve AISI1050 Çeliklerinin Abrazif Aşınma Dayanımlarının İncelenmesi. Osmangazi Üniversitesi Müh.Mim.Fak.Dergisi C.XVII, S.1. [20] Iakovou R., Bourithis L., Papadimitriou G.(2002). Synthesis of boride coatings on steel using plasma transferred arc (PTA) process and its wear performance. Wear 252.11: 1007-1015. [21] Ozbek I. (1999). Borlama Yöntemiyle AISI M50, AISI M52 Yüksek Hız Çeliklerinin ve AISI W1 Çeliğinin Yüzey Performansının Geliştirilmesi, Doktora Tezi, Sakarya Üniversitesi, Sakarya. [22] Uluköy, A., Can Ç.A. (2006). Çeliklerin Borlanması. Pamukkale Üniversitesi,Mühendislik Bilimleri Dergisi, 12 (2) 189-198. [23] S. Anil Kumar Sinha. (1991)."Boriding(Boronizing)." ASM International, ASM Handbook.4: 437-447. [24] Diktaşlı E. (2014). Bazı Alaşımlı Çeliklerin Yüksek Sıcaklık Aşınma Davranışına Borlama İşleminin Etkisi. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü. [25] Ünüvar F. (2013). Saf Kobaltın Borlama Özelliklerinin İncelenmesi, Yüksek Lisans Tezi, Süleyman Demirel Üniversitesi, Isparta. [26] Çalık, A. (2005). Termokimyasal Borlama Yöntemleri ve Önemi. 4th International Advaced Technologies Symposium, 839-844, Konya. [27] Uluköy A., Can Ç.A.. (2006). Çeliklerin Borlanmasi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12.2: 189-198. [28] Bourithis L., Papaefthymiou S., Papadimitriou G.D. (2002). Plasma transferred arc boriding of a low carbon steel: microstructure and wear properties. Applied Surface Science 200.1: 203-218. [29] Bourithis L., G. Papadimitriou G. (2003). Boriding a plain carbon steel with the plasma transferred arc process using boron and chromium diboride powders: microstructure and wear properties. Materials Letters, 57.12 (2003): 1835-1839. [30] Buytoz S., Ulutan M., Kurt B. Islak S., Somunkıran İ. (2010). Plazma Transferli Ark Kaynak Yüzey İşlemiyle AISI 304 Paslanmaz Çelik Yüzeyine WC-Ni-B4C Kompozit Kaplamasının Mikroyapısal Karakteristiği. e-Journal of New World Sciences Academy, Volume: 5, Number: 1, Article Number: 1A0063 [31] Yıldız T., Gür K.A.(2011). PTA Yöntemiyle Üretilen AISI 1030 Çelik Yüzeyine FeMo Kaplamada N2 Gazının Kaplama Mikroyapısına Etkisi, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey [32] Yuan-Fu Liu, Zhi-Cheng Feng, Fei Pu, Zhi-Ying Xia, Guang-Bao Sun, Long-Hua Zhang, Chen-Xiao Shi, Zheng Zhang. (2018). Microstructure and dry-sliding wear properties of TiC/CaF2/γ-Ni selflubricating wear-resistant composite coating produced by co-axial powder feeding plasma transferred arc (PTA) cladding process, Surface & Coatings Technology 345 (2018) 61–69, https://doi.org/10.1016/j.surfcoat.2018.04.003. [33] Bower F.T., Brody D. H., M. Flemings C.M. (1966). Measurements of Solute Redistribution in Dendritic Solidification. Transctions of the metallurgical society of aime, 624-volume 236. [34] Choudhury A., Reuther K., Wesner E., August A., Nestler B., Rettenmayr M.. (2012). Comparison of phase-field and cellular automaton models for dendritic solidification in Al–Cu alloy. Computational Materials Science 55, 263–268, doi:10.1016/j.commatsci.2011.12.019. [35] Jabbari Behnam M.M., Davami P., Varahram N. (2010). Effect of cooling rate on microstructure and mechanical properties of gray cast iron. Materials Science and Engineering A 528 (2010) 583–588, doi:10.1016/j.msea.2010.09.087. [36] Karagöz Ş., Rıdvan Yamanoğlu R., Atapek H. Ş. (2009). Atomize Tozlarda Katılaşma ve Mikroyapısal Karakterizasyon, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 15, Sayı 3, Sayfa 309-316 [37] Yıldız T., Gür K.A.(2011). PTA Yöntemiyle Üretilen AISI 1030 Çelik Yüzeyine FeMo Kaplamada N2 Gazının Kaplama Mikroyapısına Etkisi, 6th International Advanced Technologies Symposium (IATS’11), 16-18 May 2011, Elazığ, Turkey.
  • [38] Homolová V., Hiripová L. (2017). Experimental Investigation of Isothermal Section of the B-Cr-Fe Phase Diagram at 1353K, Hindawi Advances in Materials Science and Engineering Volume 2017, Article ID 2703986, 7 pages https://doi.org/10.1155/2017/2703986 [39] Gür K.A., Cengiz H.M.(2019). Mikroalaşımlı Hardox 400 Çelik Yüzeyinin Plazma Transferli Ark Kaynak Yöntemiyle Alaşımlandırılması ve İncelenmesi. DÜMF Mühendislik Dergisi 10:3 (2019) : 969-979 , doi: 10.24012/dumf.529451. [40] Demir E.M., Çelik H.Y. , Erol K. (2019). Effect of matrix material and orientation angle on tensile and tribological behavior of jute reinforced composites. Materials Testing, 61(8), 806-812. [41] Çelik H.Y., Demir E.M., Erol K., Kalkanlı A. (2020). Investigation of wear behavior of aged and non-aged SiC-reinforced AlSi7Mg2 metal matrix composites in dry sliding conditions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(1), Article Number 8, 1-9. [42] Çelik H.Y, Seçilmiş K. (2017). Investigation of wear behaviours of Al matrix composites reinforced with different B4C rate produced by powder metallurgy method. Advanced Powder Technology, 28(9), 2218-2224, Doi: 10.1016/j.apt.2017.06.002. [43] Christina Kainz, Nina Schalk, Michael Tkadletz, Christian Mitterer, Christoph Czettl (2019). The effect of B and C addition on microstructure and mechanical properties of TiN hard coatings grown by chemical vapor deposition. Thin Solid Films, 688, 137283, https://doi.org/10.1016/j.tsf.2019.05.002 [44] Çelik H.Y, ., Erol K (2019). Hardness and wear behaviours of Al matrix composites and hybrid composites reinforced with B4C and SiC. Powder Metallurgy and Metal Ceramics, 57(9-10), 613-622.