Selection of a salt tolerant Tunisian cultivar of chili pepper (Capsicum frutescens)

Giriş: Tuzluluk; biber gibi bazı tarım bitkilerinde çimlenmeyi, fide büyümesini ve verimi etkilemektedir. Bu yüzden bu çalışma, üç Tunus biber (Capsicum frutescens) çeşidinde, Tebourba, Korba ve Awlad Haffouz, NaCl’ün tohum çimlenmesi, fide büyümesi ve iyon dengesi üzerindeki etkilerini araştırmak için gerçekleştirildi. Materyal ve Metot: 0, 2, 4, 6 veya 8 g L-1 NaCl içeren suyla sulanan üç Tunus kırmızı biber çeşidinde çimlenme yüzdesi, büyüme ve mineral içerikleri ölçüldü. Bulgular: Bulgular, değişik tuz stresi seviyelerinin, çimlenme yüzdesi ve çimlenme zamanı üzerinde önemli etkisinin olduğunu göstermiştir. Saksı deneyinde, artan NaCL konsantrasyonu, bütün çeşitlerde bitki boyu, kök uzunluğu, yaprak sayısı, yaprak alanı ve klorofil miktarında önemli azalmaya sebep oldu. Yaş ve kuru ağırlıklar da etkilendi. Buna ek olarak tuzluluk, kök ve sürgündeki Na+ ve Cl– seviyelerini artırdı, fakat K+ seviyelerini azalttı. Sonuç: Awlad Haffouz çeşidi Korba ve Tebourba çeşitlerine kıyasla, en yüksek K+/Na+ oranına sahipti ve çimlenme esnasındaki en iyi tuz stres tepkisini verdi. Bu durum, bu çeşidin en toleranslı çeşit olduğunu göstermektedir.

Tuza dayanıklı Tunus kırmızı biberinin (Capsicum frutescens) seçilmesi

Background: Salinity affects germination and seedling growth and yield of several crop species, such as pepper. That is why this study was carried to evaluate the effects of NaCl on seed germination, seedling growth and ionic balance of three Tunisian chili pepper (Capsicum frutescens) cv: Tebourba, Korba and Awlad Haffouz. Materials and Methods: The percentage of germination, the growth and the mineral contents were measured in the three Tunisian chili pepper cv watered with water containing 0, 2, 4, 6 or 8 g L-1 NaCl. Results: Results showed that different salinity stress levels had significant effect on germination percentage and germination time. In pot experiment, increasing NaCl concentration, for all cv, induced a significant decrease on plant height, root length, leaves number, leaf area and chlorophyll amount. The fresh and dry weights are also affected. In addition, salinity increased Na+ and Cl– levels but decreased K+ level in roots and shoots. Conclusions: Awlad Haffouz cv had the highest K+/Na+ ratio compared to cv Korba and Tebourba and it has showed the best response under salt stress during germination and growth stage which lets it to be the most tolerant cv.

Kaynakça

Abdelly C (1992) Réactions aux contraintes nutritionnelles des principales herbacées du tapis végétal aux bordures de sebkha. Thèse en Physiologie Végétale, Université Tunis II, Tunisie.

Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38(2): 287-290. doi: 10.1023/A:1007266932623

Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia Journal of Sciences 9(1): 43-50.

Akinci IE, Akinci S, Yilmaz K, Dikici H (2004) Reponse of eggplant varieties (Salanum melongena) to salinity in germination and seeding stages. New Zealand Journal of Crop and Horticultural Science 32: 193-200. doi: 10.1080/01140671.2004.9514296

Al Thabet SS, Leilah AA, Al-Hawass I (2004) Effect of NaCl and incubation Temperature on seed germination of three canola (Brassica napus L.) cultivars. Scientific of King Faisal University (Basic and Applied Sciences) 5(1): 81-92.

Arnon DI (1949) Copper enzyme in isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiology 24: 1-15.

Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Science 166: 3-16.

Ben Dkhil B, Denden M (2010) Biochemical and Mineral Responses of Okra Seeds (Abelmoschus esculentus L. Variety Marsaouia) to Salt and Thermal Stress. Journal of Agronomy 9(2): 29- 35. doi: 10.3923/ja.2010.29.37

Ben Said L (2004) Germination, croissance et aptitude à la callogènes de deux variétés de melon (Cucumis melon L.) Panacha et Super sprint cultivées in vitro en absence et en présence de NaCl, Mémoire de Diplôme d’Etudes Approfondies en Agriculture Durable. Ecole Supérieure d’Horticulture et d’Elevage, Chott Meriem, Sousse, Tunisie.

Biricolti S, Pucci S (1995) Effect of increasing NaCl rates on “Readhaven” peach and “GF 677” root stock cultured in vitro. Advances in Horticultural Science 9(2): 75-78.

Bliss RD, Platt-Aloia KA, Thomson WW (1986) Osmotic sensitivity in relation to sensitivity in germination barely seeds. Plant, Cell and Environment 9: 727-733. doi: 10.1111/j.1365-3040.1986.tb02104.x

Blumenthal-Goldschmidt S, Poljakoff-Mayber A (1968) Effect of substrate salinity on growth and submicroscopy structure on leaf cells of Atriplex halimus L. Australian Journal of Botany 16(3): 469-478. doi: 10.1071/BT9680469

Bray EA, Bailey-Serres, Weretilnyk E (2000) Responses to abiotic stress. In: Buchanan B, Gruissem W, Jones R (eds.), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiology, Rockville, 1158-1203.

Bybordi A (2010) The Influence of Salt Stress on Seed Germination, Growth and Yield of Canola Cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1): 128-133.

Bybordi A, Tabatabaei SJ, Ahmedov A (2010) Effect of salinity on the growth and peroxidase and IAA oxidase activities in canola. Journal of Food, Agriculture and Environment 8(1): 109-112.

Chuah AM, Lee YC, Yamaguchi T, Takamura H, Yin LJ, Matoba T (2008) Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry 111(1): 20-28. doi: 10.1016/j.foodchem.2008.03.022

El-Bassiouny HMS, Bekheta MA (2005) Effect of Salt Stress on Relative Water Content, Lipid Peroxidation, Polyamines, Amino Acids and Ethylene of Two Wheat Cultivars. International Journal of Agriculture and Biology 7(3): 363-368.

Farhoudi R, Tafti MM (2011) Effect of Salt Stress on Seedlings Growth and Ions Homeostasis of Soybean (Glysin max) Cultivars. Advances in Environmental Biology 5(8): 2522-2526.

Hajlaoui H (2003) Effet de la salinité sur la variabilité génétique du pois chiche (Cicer arietinum). Mémoire de Diplôme d’Etudes Approfondies en Agriculture Durable, Ecole Supérieure d’Horticulture et d’élevage Chott Meriem, Sousse, Tunisie.

Greenway H, Munns R (1980) Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology 31: 149-190. doi: 10.1146/annurev.pp.31.060180.001053

Guerrier G (1984) Selectivité de fixation du sodium au niveau des embryons et des jeunes plantes sensible ou tolerante au NaCl. Canadian Journal of Botany 62 (9): 1791-1798. doi: 10.1139/b84-243

Ibn Maaouia-Houimli S, Denden M, Dridi-Mouhandes B, Ben Mansour-Gueddes S (2011) Caractéristiques de la croissance et de la production en fruits chez trois variétés de piment (Capsicum annuum L.) sous stress salin. Tropicultura 29(2): 75-81.

Ibriz M, Alami T, Zenasmi L, Alfaiz C, Benbella M (2005) Effet de la salinité sur le rendement en biomasse et la composition en éléments minéraux d’écotypes marocains de luzerne (Medicago sativa L). Al Awamia 115(3): 107- 117.

Kaya C, Ak BE, Higgs D, Murillo-Amador B (2002) Influence of foliar – applied calcium nitrate on strawberry plants grown under salt-stressed conditions. Australian Journal of Experimental Agriculture 42(5):631-636.

Kerkeni A (2002) Microbouturage et Callogenèse de pomme de terre (Solanum tuberosum L.) sous stress salin (NaCI). Mémoire de Diplôme d’Etudes Approfondies en Agriculture Durable, Ecole Supérieur d’Horticulture et d’élevage Chott Meriem, Sousse, Tunisie.

Keshavarzi MHB (2011) Effect of Salt Stress on Germination and Early Seedling Growth of Savory (Satureja hortensis). Australian Journal of Basic and Applied Sciences 5(2): 3274-3279.

Keshavarzi MHB, Mehrnaz S, Ohadi RS, Mohsen M, Amir L (2011) Effect of salt (NaCl) stress on germination and early seedling growth of Spinach (Spinacia oleracea L.). Annals of Biological Research 2(4): 490-497.

Lauchli A, Colmer TD, Fan TW, Higashi RM (1994) Solute regulation by calcium in salt-stressed plants. In: Cherry JH (ed.), Biochemical and Cellular Mechanisms of Stress Tolerance in Plants, Springer Verlag, Berlin, 443-461.

Marschner H (1995) Adaptation of plants to adverse chemical soil conditions. In: Mineral Nutrition of Higher Plants, 2nd Edition, London, 596-680.

Mensah JK, Akomeah PA, Ikhajiagbe B, Ekpekurede EO (2006) Effect of salinity on germination, growth and yield of five groundnut genotypes. African Journal of Biotechnology 5(20): 1973-1979.

Mezni M, Albouchi A, Bizid E, Hamza M (2002) Effet de la salinité des eaux d’irrigation sur la nutrition minérale chez trois variétés de luzerne pérennes (Medicago sativa). Agronomie 22(3): 283-29. doi: 10.1051/agro:2002014

Morant-Manceau A, Pradier E, Tremblin G (2004) Osmotic adjustment, gas exchange and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. Journal of Plant Physiology 161(1): 25-33.

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell and Environment 25: 239-250. doi: 10.1046/j.0016-8025.2001.00808.x

Munns R, Tester M (2008) Mechanisms of salinity tolerance, Annual Review of Plant Biology 59: 651-681. doi:

Munns R, Hare RA, James RA, Rebetzke GJ (2000) Genetic variation for improving the salt tolerance of durum wheat. Australian Journal of Agricultural Research 51(1): 69-74. doi: 10.1071/AR99057

Neumann PM (1995) Inhibition of root growth by salinity stress: Toxicity or an adaptive biophysical response. In: Baluska F, Ciamporova M, Gasparikova O, Barlow PW (eds.), Structure and Function of Roots, Kluwer Academic Publishers, 299-304.

Oboth G, Rocha JBT (2007) Distribution and antioxidant activity of polyphenols in ripe and unripe tree pepper (Capsicumm pubescens). Journal of Food Biochemistry 31: 456- 473. doi: 10.1111/j.1745-4514.2007.00123.x

Saboora A, Kiarostami K, Behroozbayati F, Hajihashemi S (2006) Salinity (NaCl) tolerance of wheat genotypes at germination and early seedling growth. Pakistan Journal of Biological Sciences 9(11): 2009-2021. doi: 10.3923/pjbs.2006.2009.2021

Sadeghi H (2009) Effect of Different Levels of Sodium Chloride on Yield and Chemical Composition in Two Barley Cultivars. American-Eurasian Journal of Sustainable Agriculture 3(3): 314-320.

Sahloul N (2002) Aspects de cinétique de la nutrition minérale et du développement d’une culture de tomate sous contrainte saline. Mémoire de Diplôme d’Etudes Approfondies. Institut Agronomique de Tunis, Tunisie.

Saqib M, Akhtar J, Qureshi RH (2005) Na+ exclusion and salt resistance of wheat (Tritium aestivum) in saline-waterlogged conditions are improved by the development of adventitious nodal roots and cortical root aerenchyma. Plant Science 169(1): 125-130.

Singh R, Issar D, Zala PV, Nautiyal PC (2007) Variation in sensitivity to salinity in groundnut cultivars during seed germination and early seedling growth. Journal of SAT Agricultural Research 5(1): 1-7.

Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91: 503-527. doi: 10.1093/aob/mcg058

Willenborg CJ, Gulden RH, Johnson EN, Shirtliffe SJ (2004) Germination characteristics of polymer-coated canola (Brassica napus L.) seeds subjected to moisture stress at different temperatures. Agronomy Journal 96(3): 786–791. doi: 10.2134/agronj2004.0786

Zadeh HM, Naeni MB (2007) Effects of salinity stress on the morphology and yield of two cultivars of canola (Brassica napus L.). Journal of Agronomy 6: 409-414. doi: 10.3923/ja.2007.409.414

Zhani K (2009) Amélioration par voie biotechnologique de la tolérance de piment (Capsicum annuum L.) à la salinité (NaCl), Mémoire de Mastère en Agriculture Durable. Institut Supérieur Agronomique de Chott Mariem, Sousse, Tunisie.

Kaynak Göster