In silico characterization and comparative analysis of Bacillus subtilis GntR type LutR transcription factor

Background: The GntR-type transcriptional factor LutR (formerly YvfI) behaves as a transition stateregulator, governing adaptations of Bacillus subtilis cells to the transition from exponential growthto stationary phase.Material and Methods: In this study, we evaluated a total of 30 LutR proteins from differentbacterial species that were available in the NCBI database. By performing the physicochemicalanalyses, domain analysis, and phylogenetic tree construction, we identified some similarities anddifferences among these 30 LutR proteins. Furthermore, only the primer structure of Bacillus subtilis168 LutR was compared with the sequences and 3D conformational situations of the well-knownHTH-type transcriptional factors FadR (PDB ID: 1HW1, 1HW2, 1HT9) and YvoA (PDB ID: 2WV0) usingPyMOL.Results: These analyses revealed that the critical residues for DNA-recognition and DNA-binding ofLutR are highly conserved and conformationally correspond to the same positions as those in FadRand YvoA. The sequence (15-SVQALAESF-23) of the second helix in LutR seems to be important forDNA-binding, while the Q17-R27-Q47 residues might be critical for DNA recognition. Here, weprovide a detailed description of the similarities and differences between B. subtilis LutR and boththe other LutR proteins from different bacterial species and other HTH-type transcriptional factors.Conclusions: These results provide a scientific groundworkbase and can be used for advanced insilico analysis, homology modelling, and in vitro studies, including DNA-protein interaction analysis,such as ChIP and EMSA methods.

Kaynakça

Adeloye AO, Ajibade PA (2011) high molar extinction coefficient mono anthracenyl bipyridyl heteroleptic ruthenium(|l) complex: synthesis, photophysical and electrochemical properties. Molecules 16(6): 4615-4631. http://dx.doi.org/10.3390/molecules16064615

Anonymous (2014a) Protein database. National Center for Biotechnology Information, United States National Library of Medicine, Bethesda. http://www.ncbi.n|m.nih.gov/protein Anonymous (2014b) Protein data bank. Research Collaboratory for Structural Bioinformatics, Piscataway. http://www.rcsb.org/pdb/home/home.do

Anonymous (2014c) CIustaIW, Multiple sequence alignment program. The EMBL-European Bioinformatics Institute, Cambridge. http://www2.ebi.ac.uk/c|usta|w

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, FIegeI V, Fortier A, Gasteiger E,

Grosdidier A, Hernandez C, loannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G,

Xenarios I, Stockinger (2012) ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research 40(W1): W597- W603. http://dx.doi.org/10.1093/nar/gks400

Babu MM, Teichmann SA (2003) Evolution of transcription factors and the gene regulatory network in Escherichia coli.

Nucleic Acids Research 31(4): 1234-1244. http://dx.doi.org/10.1093/nar/gkg210

Bai L, Qi X, Zhang Y, Yao C, Guo L,Jiang R, Zhang R, Li (2013) new GntR family regulator Ste1 in Streptomyces sp. 139.

Applied Microbiology and Biotechnology 97: 8673-8682. http://dx.doi.org/10.1007/500253-013--5076-6

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37: 202-208. http://dx.doi.org/10.1093/nar/gkp335

Bertrand KP, Postle K, Wray LVJ, Reznikoff WS (1983) Overlapping divergent promoters control expression of Tn10 tetracycline resistance. Gene 23(2): 149-156. http://dx.doi.org/10.1016/0378--1119(83)90046-X

Brand LH, Fischer NM, Harter K, Kohlbacher O, Wanke (2013) Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays. Nucleic Acids Research 41 (21 ): 9764-9778. http://dx.doi.org/10.1093/nar/gkt732

Brennan RG (1991) Interactions of the helix--turn--helix binding domain. Current Opinion in Structural Biology 1: 80-88. http:/ldx.doi.org/10.1016/0959-440X(91)90015-L

Brennan RG (1992) DNA recognition by the helix-turn-helix motif. Current Opinion in Structural Biology 2(1): 100-108. http://dx.doi.org/10.1016/0959-440X(92)90184--9

Brennan RG, Matthews BW (1989) The helix-turn-helix DNA binding motif. Journal of Biological Chemistry 264: 1903- 1906.

Chai Y, Kolte, R, Losick (2009) widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofiIm formation. Journal of Bacteriology 191 (8): 2423-2430. http:/ldx.doi.org/10.1128/JB.01464-08

Clark KL, Halay ED, Lai E, Burley SK (1993) Co-crystaI structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364: 412-420. http:/ldx.doi.org/10.1038/364412a0

Clubb RT, Omichinski JG, SaviIahti H, Mizuuchi K, Gronenborn AM Clore GM (1994) nove| class of winged helix-turnhelix protein: the DNA-binding domain of Mu transposase. Structure 2(11): 1041-1048.

Filiz E, Koc (2013) In silico analysis of dicer-like protein (DCLs) sequences from higher plant species. Istanbul University Faculty of ScienceJournaI of Biology 72(1): 53-63.

Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch (2005) Protein identification and analysis tools on the ExPASy Server. In: Walker JM (ed), The proteomics protocols handbook, Humana press, Totowa, 571 -607. http://dx.doi.org/10.1385/1-59259-890-0z571

Gasteiger E, Gattiker A, Hoogland C, Ivanyi |, Appel RD, Bairoch (2003) ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31(13): 3784-3788. http://dx.doi.org/10.1093/nar/gkg563

Gill SC, von Hippel PH (1989) Calculation of protein extinction coefficients from amino acid sequence data. Analytical Biochemistry 182: 319-326.

Gorelik M, LuninVV, SkarinaT, Savchenko (2006) Structural characterization of GntR/HutC family signaling domain. Protein Science 15(6): 1506-1511. http:/ldx.doi.org/10.1110/ps.062146906

Guruprasad K, Reddy BV, Pandit ME (1990) Correlation between stability of protein and its dipeptide composition: nove| approach for predicting in vivo stability ofa protein from its primary sequence. Protein Engineering 4(2):155- 161. http://dx.doi.org/10.1093/protein/4.2.155

Harrison CJ, Bohm AA, Nelson HCM (1994) Crystal structure of the DNA binding domain of the heat shock transcriptional factor. Science 263(5144): 224-227.

Haydon DJ, Guest JR (1991) new family of bacterial regulatory proteins. Federation of European Microbiological Societies Microbiology Letters 63(2-3): 291 -295.

Hillerich B, WestphelingJ (2006) New GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. Journal of Bacteriology 188(21): 7477-7487. http:/ldx.doi.org/10.1128/JB.00898-06

Hofmann K, Bucher P, Falquet L, Bairoch (1999) The PROSITE database, its status in 1999. Nucleic Acids Research 27(1): 215-219.

Hulo N, Bairoch A, Bulliard V, Cerutti L, De Castro E, Langendijk-Genevaux PS, Pagni M, Sigrist CJ (2006) The PROSITE database. Nucleic Acids Research 34(supp| 1): D227-D230. http://dx.doi.org/10.1093/nar/gkj063

|dicula-Thomas S, Balaji PV (2005) Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Science 14: 582-592. http:/ldx.doi.org/10.1110/ps.041009005

Ikai (1980) Thermostability and a|iphatic index of globular proteins. Journal of Biochemistry 88(6): 1895-1898.

Irigul-Sonmez O, Koroglu TE, Ozturk B, Kovacs AT, Kupiers OP, Yazgan-Karatas (2014) In Bacillus subti/is LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase. Microbiology 160: 243-260. http:/ldx.doi.org/10.1099/mic.0.064675-0

Jones S, Heyningen PV, Berman HM, Thornton JM (1999) Protein-DNA interactions: structural analysis. Journal of Molecular Biology 287: 877-896. http://dx.doi.org/10.1006/jmbi.1999.2659

Koroglu ET, Kurt-Gur G, Unlu EC, Yazgan-Karatas (2008) The novel gene yvfl in Bacillus subti/is is essential for bacilysin biosynthesis. Antonie van Leeuwenhoek 94: 471 -479. http://dx.doi.org/10.1007/s10482--008-9265--8

Kumar S, Nei M, Dudley J, Tamura (2008) MEGA: biologistcentric software for evolutionary analysis of DNA and protein sequences. Brief Bioinformatics 9: 299-306. http://dx.doi.org/10.1093/bib/bbn017

Kunst F, Ogasawara N, Moszer |, Albertini AM, Alloni G, Azevedo et al. (1997) The complete genome sequence of the gram positive bacterium Bacillus subti/is. Nature 90: 249-256. http://dx.doi.org/10.1038/36786

KyteJ, Doolittle RF (1982) simple method for displaying the hydropathic character of protein. Journal of Molecular Biology 157(1): 105-132. http://dx.doi.org/10.1016/0022-2836(82)90515-0

Lai E, Clark KL, Burley SK, DarneIIJEJr (1993) Hepatocyte nuclear factor 3/fork head or 'winged helix' proteins: family of transcriptional factors of diverse biologic function. Proceedings of the National Academy of Sciences of the United States of America 90(22): 10421-10423.

Lakshmi PTV, Subhashini (2010) In silico sequence specific analysis of ERBBZ RTK alterations responsible for euroectodermal tumors of Homo sapiens. Journal of Bioinformatics and Sequence Analysis 2(6): 75-84.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWiIIiam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal and Clustal version 2.0. Bioinformatics 23(21): 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404

Levine MT, McCoy C, Vermaak D, Lee YC, Hiatt MA, Matsen FA, Malik HS (2012) Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein (HP1) gene family. Plos Genetics 8(6): e1002729 http:/ldx.doi.org/10.1371/journal.pgen.1002729

Lubec G, Afjehi-Sadat L, YangJW, John JPP (2005) Searching for hypothetical proteins: Theory and practice based upon original data and literature. Progress in Neurobiology 77: 90-127. http://dx.doi.org/10.1016/j.pneurobio.2005.10.001

Najmanovich R, KuttnerJ, Sobolev V, Edelman (2000) Side-chain flexibility in proteins upon ligand binding. Proteins: Structure, Function, and Genetics 39(3): 261 -268.

Ramakrishnan V, Finch JT, Graziano V, Lee PL, Sweet RM (1993) Crystal structure of the globular domain of histone HS and its implications for nucleosome binding. Nature 362: 219-223. http:/ldx.doi.org/10.1038/362219a0

Resch M, Schiltz E, Titgemeyer F, Muller YA (2010) Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. Nucleic Acids Research 38(7): 2485-2497. http:/ldx.doi.org/10.1093/nar/gkp1191

Rezacova P, Krejcirikova V, Borek D, Moy SF, Joachimiak A, Otwinowski (2007) The crystal structure of the effectorbinding domain of the trehalose repressor TreR from Bacillus subti/is 168 reveals unique quarternary assembly.

Proteins 69(3): 679-682. http:/ldx.doi.org/10.1002/prot.21516

Rigali S, Derouaux A, Giannotta F, DusartJ (2002) Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. The Journal of Biological Chemistry 277(15): 12507-12515. http:/ldx.doi.org/10.1074/jbc.M110968200

Rigali S, Schlicht M, Hoskisson P, Nothaft H, Merzbacher M,Joris B, Titgemeyer (2004) Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Research 32(11): 3418-3426. http:/ldx.doi.org/10.1093/nar/gkh673

Schultz SC, Shields GC, Steitz TA (1 991) Crystal structure ofa CAP-DNA complex: the DNA is bent by 90 degrees. Science 253: 1001-1007.

Sigrist CJA, Cerutti L, Hulo N, Gattiker A, Falquet L, Pagni M, Bairoch A, Bucher (2002) PROSITE: documented database using patterns and profiles as motif descriptors. Brief Bioinformatics 3(3): 265-274. http://dx.doi.org/10.1093/bib/3.3.265

Sivakumar K, Balaji S, Gangaradhakrishnan (2007) In silico characterization of antifreeze proteins using computational tools and servers. Journal of Chemical Sciences 119(5): 571-579.

Smialowski P, Martin-Galiano AJ, Mikolajka A, Girschick T, Holak TA, Frishman (2007) Protein solubility: sequence based prediction and experimental verification. Bioinformatics 23(19): 2536-2542. http://dx.doi.org/10.1093/bioinformatics/btl623

Smith GR, Sternberg MJE, Bates PA (2005) The Relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. Journal of Molecular Biology 347(5): 1077-1101. http://dx.doi.org/10.1016/j.jmb.2005.01.058

Soltis PS, Soltis DE (2003) Applying the bootstrap in phylogeny reconstruction. Statistical Science 18(2): 256-267.

Spizizen (1958) Transformation of biochemically deficient strains of Bacillus Subtibi/is by deoxyribonucleate. Proceedings of the National Academy of Sciences of the United States of America 44(10): 1072-1078.

Suzuki M, Brenner SE, Gerstein M, Yagi (1995) DNA recognition code of transcription factors. Protein Engineering 8(4): 319-328. http:/ldx.doi.org/10.1093/protein/8.4.319

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and

Evolution 28: 2731 -2739. http:/ldx.doi.org/10.1093/molbev/msr121

VaquerizasJM, Teichmann SA, Luscombe NM (2012) How do you find transcription factors? Computational approaches to compile and annotate repertoires of regulators for any genome. Methods of Molecular Biology 786: 3-19. http:/ldx.doi.org/10.1007/978-1-61779-292-2_1

Wan (2004) Bioinformatic identification and functional characterization of 054 promoters in Chlamydia trachomatis. PhD Thesis, Queensland University of Technology, Brisbane.

Wilson KP, Shewchuk LM, Brennan RG, Otsuka AJ, Matthews BW (1992) Escherichia coli biotin holoenzyme synthetase/bio repressor crystal structure delineates the biotin- and DNA-binding domains. Proceedings of the National Academy of Sciences of the United States of America 89: 9257-9261.

Wintjens R, Rooman (1996) Structural classification of HTH DNA-binding domains and protein-DNA interaction modes. Journal of Molecular Biology 262: 294-313. http:/ldx.doi.org/10.1006/jmbi.1996.0514

Xu Y, Heath RJ, Li Z, Rock CO, White SW (2001) The FadR-DNA complex. Transcriptional control of fatty acid metabolism in Escherichia coli. TheJournal of Biological Chemistry 276(20): 17373-17379. http://dx.doi.org/10.1074/jbc.M100195200

Yan BX, Sun YQ (1997) Glycine residues provide flexibility for enzyme active sites. Journal of Biological Chemistry 272: 3190-3194.

Zhang C, Zhao X, Zhang MQ (2007) Functional in silico analysis of gene regulatory polymorphism. In: Barnes MR (ed), Bioinformatics for geneticists: bioinformatics primer for the analysis of genetic data, John Wiley and Sons, New York, 281 -309.

Zheleznova EE, Markham PN, Neyfakh AA, Brennan RG (1999) Structural basis of multidrug recognition by erR, transcription activator of multidrug transporter. Cell 96: 353-362.

http://dx.doi.org/10.1016/S0092--8674(00)80548-6

Kaynak Göster

  • ISSN: 1307-9867
  • Yayın Aralığı: Yılda 0 Sayı
  • Başlangıç: 2018

120 37