Effect of heavy metals on plasma membrane lipids and antioxidant enzymes of Zygophyllum species

Giriş: Ağır metaller, toprakta yüksek konsantrasyonlarda bulunduklarında, büyük çevresel kirleticilerdir ve bitkilerin büyüme ve gelişimi üzerinde toksik etkileri vardır. Endüstriyel aktiviteler, çok geniş alanlarda ağır metallerin birikmesi ve doğal bitki örtüsünün etkilenmesini netice vermektedir. Bu yüzden, bitkilerin ağır metallerin olumsuz etkileri ile nasıl başa çıktıklarının anlaşılması çok büyük önem arzetmektdir. Materyal ve Metot: İki farklı alan seçildi. Bunlardan biri, bir alçıtaşı fabrikası yakınlarında, diğeri ise fabrikadan 25 km uzaklıktaydı. İki Zygophyllum türü (Z. album ve Z. coccineum) çalışma alanlarında doğal olarak yetişmekteydi. Topraktaki ağır metal stresinin; sürgün ağır metal konsantrasyonu, lipid peroksidasyonu, antioksidan enzim aktiviteleri ve kök plazma zarı (PM) lipid kompozisyonu üzerine etkileri analiz edildi. Bulgular: Çevre kirliliğine maruz kalan alanda yetişen her iki türün sürgünlerinde, ağır metal konsantrasyonları ve lipid peroksidasyonu arttı. Kirlilik şartları altında, her iki türde de; askorbat oksidaz (ASO), gayakol (GPX), askorbat peroksidaz (APX) ve süperoksit dismutaz (SOD) aktiviteleri artarken, katalaz (CAT) aktiviteleri azaldı. Z. album ve Z. coccineum'da PM toplam lipidleri, fosfolipidler, glikolipidler ve steroller azaldı. Ağır metal stresi; her iki türün kök PM'ında fosfatidiletanolamini (PE) artırdı, fosfatidilinositol (PI) ve fosfatidilgliserolü (PG) azalttı, fosfatidilkolinde (PC) ise önemli bir değişiklik oluşturmadı. Fosfatidilserin; kirlilik koşullarında, Z. album PM'ında (PS) azalırken, Z. coccineum PM'ında arttı. Ağır metal stresi, kök PM'ındaki yağ asitlerinin kompozisyon ve konsantrasyonunu değiştirdi ve her iki türde doymuş/doymamış oranının değişmesine yol açtı. Sonuç: Zygophyllum türlerinin ağır metal stresine dayanabilmesi için, etkin bir antioksidan mekanizmasının ve olumlu PM lipid dengesinin önemli olduğunu göstermektedir.

Ağır metallerin, Zygophyllum türlerinin plazma zarları ve antioksidan enzimleri üzerine etkisi

Background: Heavy metals are major environmental pollutant when they present in high concentration in soil and have toxic effects on growth and development of plants. Industrial activities result in heavy metal pollution of large areas of land, which greatly affects natural vegetation. Understanding the mechanism of how plants combat heavy metals adverse effects is hence of great importance. Materials and Methods: Two different localities were chosen; one locality was in the vicinity of gypsum factory and the other one was 25 km away from the factory. Two Zygophyllum species (Z. album and Z. coccineum) were naturally grown in the studied areas. The effects of soil heavy metal stress on shoot heavy metal concentrations, lipid peroxidation, antioxidant enzyme activities and the root plasma membrane (PM) lipid composition were analyzed. Results: Heavy metal concentrations and Lipid peroxidation increased in the shoot of both species grown in the polluted area. The activities of ascorbate oxidase (ASO), guaiacal peroxidase (GPX), ascorbate peroxidase (APX) and superoxide dismutase (SOD) were increased whereas these of catalase (CAT) were decreased in both species under the polluted conditions. PM total lipids, phospholipids, glycolipids and sterols were decreased in Z. album and Z. coccineum as a result of the polluted soil. Heavy metal stress increased phosphatidylethanolamine (PE) and decreased phosphatidylinositol (PI) and phophatidylglycerol (PG), with no significant change in phosphatidylcholine (PC) in the root PM of both species. Phosphatidylserine (PS) decreased in the PM of Z. album whereas it increased in the PM of Z. coccineum under the pollution conditions. Heavy metal stress changed the composition and concentration of fatty acids of the root PM, resulting in increased sat/unsat ratio of both species. Conclusion: the results suggest that efficient antioxidant machinery and favorable PM lipid homeostasis are important to enable Zygophyllum species to withstand the prevailing heavy metal stress.

Kaynakça

Anonymous (1986) Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Community, L181/6.

Beak KH, Skinner DZ (2003) Alteration of antioxidant enzyme gene expression during cold acclimation of near-isogenic wheat lines. Plant Science 165: 1221-1227. doi: 10.1016/S0168-9452(03)00329-7

Ben Ammar W, Nouairi I, Zorrouk M, Jemal F (2007) Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Plant Growth Regulation 53: 75-85. doi: 10.1007/s10725-007-9203-1

Black CA (1965) Methods of soil analysis. Parts 1 & 2, American Society of Agronomy, Madison, Wisconsin.

Breckle SW, Kahle H (1991) Geobotany and ecology. Progress in Botany 52: 391-406.

Candan N, Tarhan L (2003) The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Science 163: 769-779. doi: 10.1016/S0168-9452(03)00269-3

Chaffai R, Ali T, Ferjani E (2005) Comparative effects of copper and cadmium on growth and lipid content in maize seedlings (Zea mays L.). Pakistan Journal of Biological Sciences 8 (4): 649-655. doi: 10.3923/pjbs.2005.649.655

Chaffai R, Seybon TN, Marzouk B, Ferjani E (2009) A comparative analysis of fatty acidcomposition of root and shoot lipids in Zea mays under copper and cadmium stress. Acta Biologia Hungarian 60: 109-125. doi: 10.1556/ABIOL.60.2009.1.10

Chinoy JJ, Singh YD, Gurumurti K (1976) Colorimetric determination of ascorbic acid turnover in plants. Indian Journal Plant Physiology 19: 122-30.

Ciemense S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212: 475-480.

Deinstrop EH, Weinheim W (2000) Applied thin layer chromatography. Scottish Crop Research Institute, Dundee.

Devi SR, Prasad MN (1998) Copper toxicity in Ceratophyllum demeresum, a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Science 138: 157-165.

Devi SR, Prasad MN (1999) Membrane lipid alterations in heavy metal exposed plants. In: Prasad MNV, Hagemeyer J (eds), Heavy Metal Stress in Plants. From Molecules to Ecosystems, Springer, Berlin, 99-116.

Gara LD, Pinto MC, Tommasi F (2003) The antioxidant systems and reactive oxygen species during plant-pathogen interaction. Plant Physiology and Biochemistry 41: 863-870.

Hammerschmidt R, Nucles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiology of Plant Pathology 20: 73-82. doi: 10.1016/0048- 4059(82)90025-X

Harwood JL (1995) Recent environmental concerns and lipid metabolism. In: Kader JC, Mazliak (eds), Plant lipid Metabolism, Kluwer Academic publishers, Dordrecht, 361-368.

Jackson ML (1967) Soil chemical analysis. Prinitice-Hall of India Private, New Delhi, India.

Janicka R, Katarzyna K, Marek B, Grazyna K (2008) Response of plasma membrane H+-ATPase to heavy metal stress in Cucumis sativus roots. Journal of Experimental Botany 59: 3721-3728. doi: 10.1093/jxb/ern219

Jemal F, Zarrouk M, Ghorbal MH (2000) Effect of cadmium on lipid composition of pepper. Biochemical Society Transition 28: 907-910.

Kappus H (1985) Lipid peroxidation; Mechanisms, Analysis, Enzymology and Biological relevance. In: Sies H (ed), Oxidative Stress, Academic press, London, 273-310.

Kates M (1972) Techniques of lipidology. Isolation, analysis and identification of lipids. In: Work TS, Work E (eds), Laboratory Techniques in Biochemistry and Molecular Biology, North Holland Publ, Amesterdam, 347-390.

Khan AG, Kuek TM, Chaudhury TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41: 197-203. doi: 10.1016/S0045-6535(99)00412-9

Mansour MMF, Van Hasselt PR, Kuiper PJC (1994) Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiologia Plantarum 92:473-478.

Mansour MMF, Salama KHA, Al-Mutawa MM, Abou Hadid AF (2002) Effect of NaCl and polyamines on plasma membrane lipids of wheat roots. Biologia Plantarum 45: 235-239.

Mansour MMF, Salama KHA, Al-Mutawa MM (2003) Transport proteins and salt tolerance in plants. Plant Science 164: 891-900. doi: 10.1016/S0168-9452(03)00109-2

Mansour MMF, Salama KHA (2004) Cellular basis of salinity tolerance in plants. Environmental and Experimental Botany 52: 113-122. doi: 10.1016/j.envexpbot.2004.01.009

Mittler R (2002) Oxidative stress, antioxidants, and stress tolerance. Trends in Plant Science 7: 405-410. doi: 10.1016/S1360-1385(02)02312-9

Nouairi I, Ben Ammar W, Ben Youssef N, Ben Miled D, Habib GM, Zarrouk M (2006) Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Science 170: 511-519. doi: 10.1016/j.plantsci.2005.10.003

Quartacci MF, Pinzino C, Sgherri CLM, Dalla Vecchia F, NavariIzzo F (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Physiologia Plantarum 108: 87-93. doi: 10.1034/j.1399-3054-2000.108001087.x

Quiles MJ, López NI (2004) Photoinhibition of photosystems I and II induced by exposure to high light intensity during oat plant grown effects on the chloroplastic NADH dehydrogenase complex. Plant Science 166: 815-823.

Rai V, Vaypayee P, Singh SN, Mehrotra S (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum. Plant Science 167: 1159-1164. doi: 10.1016/j.plantsci.2004.06.016

Richards LA (1954) Diagnosis and improvement of saline and alkali soils. U.S. Department Agriculture, Handbook no. 60.

Rucinska R, Waplak S, Gwozdz A E (1999) Free radical formation and activity of antioxidant enzymes in lupine roots exposed to lead. Plant Physiology and Biochemistry 37: 187-194. doi: 10.1016/S0981-9428(99)80033-3

Salama KHA, Mansour MMF, Ali FZM, Abou Hadid AF (2007) NaCl-induced changes in plasma membrane lipids and proteins of Zea mays L. cultivars differing in their response to salinity. Acta Physiologia Plantarum 29: 351-359. doi: 10.1007/s11738-007-0044-3

Sandalio LM, Dalura HC, Gomez M, Romero-Puertas MC, Rio LA (2001) Cadmium induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany 52: 2115-2126.

Sanders JR, McGrath SP, Adams TM (1986) Zinc, copper and nickel concentrations in ryegrass grown on sludge contaminated soils of different pH. Journal of Food Science Agriculture 37: 961-968.

Sebastiani I, Scebba F, Tongttti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environmental and Experimental Botany 52: 79-86.

Tappel AL (1973) Lipid peroxidation damage to cell components. Federation Proceedings of Biochemistry 32: 1870- 1874.

Thompson GR (1992) The regulation of membrane lipid, Academic Press, Boca Raton, Florida.

Tohidi Z, Baghizadeh A, Enteshari S (2009) The effect of aluminum and phosphorus on Brassica napus. American European Agriculture and Environmental Sciences 6: 137-142.

Vaidyanathan H, Sivakumar P, Chakrabarsty R, Thomas G (2003) Scavenging of reactive oxygen species in NaClstressed rice (Oryza sativa L.) - differential response in salt tolerant and sensitive varieties. Plant Science 165: 1411- 1418. doi: 10.1016/j.plantsci.2003.08.005

Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed), Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity, Verlagsgesellschaft, Weinheim, 150-177.

Zembala M, Filek M, Walas S, Mrowiec H, Kornaś A, Miszalski Z, Hartikainen H (2010) Effect of selenium on macro-and microelement distribution and physiological parameters of rape and wheat seedlings exposed to cadmium stress. Plant and Soil 329(1-2): 457-468. doi: 10.1007/s11104-009-0171-2

Zhang F, Wang Y, Lou Z, Dong J (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67: 44-50. doi: 10.1016/j.chemosphere.2006.10.007

Zornoza P, Vazquez S, Esteban E, Fernandez-Pascual M, Carpena R (2002) Cadmium-stress in nodulated white lupin: strategies to avoid toxicity. Plant Physiology Biochemistry 40: 103-107. doi: 10.1016/s0981(02)01464-x

Kaynak Göster