WC Tabanlı Sert Malzemeler Nasıl Geliştirili

Tungsten karbür seramikler içerisinde mükemmel korozyon direnci ve yüksek sertliğe sahip olduğu bilinmektedir. Üstün mekanik özellikleri ve aşınma direncinden dolayı, Co bağlayıcı içeren tungsten karbür kesici takımlar birçok çalışmaya konu olmuştur. Tungsten karbür esaslı kompozitlerde, özellikle mikrodalga radyasyonu ile işlem yapan, Ni ve Fe'nin bağlayıcı olarak kullanımıyla ilgili sınırlı sayıda çalışma vardır. Bu çalışmada, elektriksiz nikel kaplı tungsten karbür seramik tozundan yapılmış bir kompozit kesici alet mikrodalga sinterleme ile üretildi. Kompozit kesici alet üretiminde 2 farklı tungsten karbür toz büyüklüğü 2 µm ve 10 µm kullanıldı. Mikrodalga sinterleme, 2 saat boyunca iki farklı 1200 ve 1400 ° C sıcaklıkta gerçekleştirildi. Kompozit kesici aletlerin karakterizasyonu XRD, sertlik, sıkıştırma testi ve elektron mikroskobu teknikleri ile yapılmıştır.

How Improved to WC Based Hard Materials

Tungsten carbide is known to have excellent corrosion resistance and high hardness within carbide ceramics. Due to their superior mechanical properties and wear resistance, tungsten carbide cutting tools containing Co binder have been the subject of many studies. There are a limited number of works regarding the use of Ni and Fe as a binder in tungsten carbide based composites, especially processing with microwave radiation. In this study, a composite cutting tool made of electroless nickel coated tungsten carbide ceramic powder was produced by microwave sintering. Two different tungsten carbide powder sizes of 2 µm and 10 µm were used for the production of composite cutting tool. The microwave sintering was carried out at two different temperatures of 1200 and 1400 ° C for 2 hours. Characterization of composite cutting tools was made by XRD, hardness, compression test and electron microscopy techniques.

___

  • 1. D CLARK, WH SUTTON, Microwave processing of materials, Annu Rev Mater Sci, 26 (1996), pp. 299–331
  • 2. Y XIONG, K LAU, X ZHOU, J M. SCHOENUNG, A Streamlined Life Cycle Assessment On The Fabrication Of WC-Co Cermets, Journal Of Cleaner Production, Volume:16, 1118-1126, 2008.
  • 3. DINESH, DK, Microwave Processing of Ceramics, Current Opinion in Solid State and Materials ScienceVolume 3, Issue 5, October 1998, Pages 480–485
  • 4. K. RO¨DIGER, K. DREYER, T. GERDES, M. WILLERT-PORADA, Microwave sintering of hardmetals, International Journal of Refractory Metals and Hard Materials, 16, 4–6, 1998, 409–416
  • 5. Z.G. BAN, L. L. SHAW: Journal Of Materials Science, Volume: 37, 3397 – 3403, 2002.
  • 6. UPADHYAYA G.S., BHAUMIK S.K.: Material Science And Engineering-A, Volume:249, 105–106, 1988.
  • 7. TAEGONG R., SOHN H. Y., HAN G., HWANG K. S., MENA M., FANG Z. Z., “Nanograined WC-Co Composite Powders By Chemical Vapor Synthesis”, Metallurgical And Materials Transactions B, Vol: 39/B, 1007-1012, 2008.
  • 8. BAN Z. G., SHAW L. L., “Synthesis And Processing Of Nanostructured WC-Co Materials”, Journal Of Materials Science, Vol: 37, 3397-3403, 2002.
  • 9. E. BREVAL, J.P. CHENG, D.K. AGRAWAL, P. GIGL, M. DENNIS, R.ROY, A.J. PAPWORTH, Comparison between microwave and conventional sintering of WC/Co composites, Materials Science and Engineering A 391 (2005) 285–295
  • 10. D. DEMIRSKYI, H. BORODIANSKA, D. AGRAWAL, A. RAGULYA, Y. SAKKA, O. VASYLKIV, Peculiarities of the neck growth process during initial stage of spark-plasma, microwave and conventional sintering of WC spheres, Journal of Alloys and Compounds, 523, 2012, 1–10
  • 11. S-H CHANG, S-L CHEN, Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys, Journal of Alloys and Compounds, Volume 585, 2014, Pages 407–413
  • 12. B. WITTMANN, W.D. SCHUBERT, B. LUX, WC grain growth and grain growth inhibition in nickel and iron binder hardmetals, Int. J. Refract. Met. Hard Mater., 20 (2002) 51–60
  • 13. J.M. GUILEMANY, I. SANCHIZ, B.G. MELLOR, N. LLORCA, J.R. MIGUEL, Mechanical-property relationships of Co/WC and Co-Ni-Fe/WC hard metal alloys, Int. J. Refract. Met. Hard Mater., 12 (1993–1994), pp. 199–206
  • 14. E. TAHERI-NASSAJ, S.H. MIRHOSSEINI, An In Situ WC–Ni Composite Fabricated By The SHS Method, Journal Of Materials Processing Technology, Volume: 142, 422–426, 2003.15. A. YÖNETKEN, A. EROL, The Effect of Microwave Sintering on the Properties of Electroless Ni Plated WC-Fe-Ni Composites, Science And Engineering Of Composite Materials, 17, 3, 191-198, 2010
  • 16. M. SINGLETON, P. NASH, The C-Ni (Carbon Nickel) System, Bulletin of Alloy Phase Diagrams, 10, 2, pp 121-126, 1989
  • 17. H OKAMOTO, Ni-W (Nickel-Tungsten), Journal of Phase Equilibria, 12, 6, 1991, p706
  • 18. D. AGRAWAL, J. CHENG, A. LACKNER, W. FERSTL, Microwave sintering of commercial WC/Co based hard metal tools, Proceedings of the Euro PM’99 Conference (1999), pp. 175–182
  • 19. ZHANG W. Z., GAO H. Y., CAO S. H., Fabrication Of Nanocrystalline WC-6C0 Composite Powder, Journal Of Central South University, Volume: 38, Issue: 5, 837-842, 2007.
  • 20. LI T., LI Q., FUHA J.Y.H., YU P. C., WU C.C., Effects Of Lower Cobalt Binder Concentrations In Sintering Of Tungsten Carbide, Materials Science and Engineering A, Vol. 430, pp. 113–119, 2006.
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü