Energy, Exergy and Sustainability Indicators of Photovoltaic Panel Cooling under Forced Convection

Bu çalışmada, yatay bir tüp fırında FCCVD yöntemiyle 610 oC sıcaklıkta Al folyo üzerine VA-CNT’ler homojen bir şekilde sentezlenmiştir. Karbon kaynağı olarak etanol kullanılırken katalizör olarak da ferrosen kullanılmıştır. Çapları ~10-15 nm aralığında, uzunlukları ise ~30-35 µm aralığında değişen VA-CNT'ler elde edilmiştir. VA-CNT'lerin yapısal ve morfolojik analizleri, X-Işını Kırınım (XRD), Alan Emisyon Taramalı Elektron Mikroskobu (FESEM), Enerji Dağılım X-Işını Spektroskopisi (EDS), Raman Spektroskopisi ve X-Işını Fotoelektron Spektroskopisi (XPS) kullanılarak belirlenmiştir. Geniş bir alanda Al folyo üzerinde FCCVD yöntemiyle sentezlenen bu VA-CNT'ler, özellikle enerji depolama, optoelektronik ve sensör uygulamalarında kullanılabilme potansiyeline sahiptir.
Anahtar Kelimeler:

VA-CNTs, FCCVD, aluminum foil

Energy, Exergy and Sustainability Indicators of Photovoltaic Panel Cooling under Forced Convection

In this study, VA-CNTs were synthesized homogeneously on Al foil at 610 oC temperature by Floating Catalyst Chemical Vapor Deposition (FCCVD) method in a horizontal tube furnace. While ethanol was used as the carbon source, ferrocene was used as the catalyst. VA-CNTs with diameters in the range of ~10-15 nm and lengths in the range of ~30-35 µm were obtained. Structural and morphological analyzes of VA-CNTs were determined using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersion X-Ray Spectroscopy (EDS), Raman Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS). These VA-CNTs, synthesized by the FCCVD method on an Al foil in a large area, have the potential applications to be used especially in energy storage, optoelectronic, and sensor.

Kaynakça

Bondavalli, P., Legagneux, P., & Pribat, D. (2009). Carbon nanotubes based transistors as gas sensors: State of the art and critical review. Sensors and Actuators B: Chemical, 140(1), 304-318.

Chachuli, S. A. M., Hamidon, M. N., Ertugrul, M., Mamat, M. S., Coban, O., Tuzluca, F. N., ... & Shamsudin, N. H. (2021). Effects of MWCNTs/Graphene Nanoflakes/MXene addition to TiO2 thick film on hydrogen gas sensing. Journal of Alloys and Compounds, 160671.

Chen, D. R., Chitranshi, M., Schulz, M., & Shanov, V. (2019). A Review of Three Major Factors Controlling Carbon Nanotubes Synthesis from the Floating Catalyst Chemical Vapor Deposition. Nano Life, 9(04), 1930002.

Chen, Y., Zhang, Y., Hu, Y., Kang, L., Zhang, S., Xie, H., ... & Zhang, J. (2014). State of the art of single‐walled carbon nanotube synthesis on surfaces. Advanced Materials, 26(34), 5898-5922.

Ionescu, M. I., Zhang, Y., Li, R., Sun, X., Abou-Rachid, H., & Lussier, L. S. (2011). Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies. Applied surface science, 257(15), 6843-6849.

Jerng, S. K., Yu, D. S., Lee, J. H., Kim, C., Yoon, S., & Chun, S. H. (2011). Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy. Nanoscale research letters, 6(1), 1-6.

Jo, S. H., Tu, Y., Huang, Z. P., Carnahan, D. L., Wang, D. Z., & Ren, Z. F. (2003). Effect of length and spacing of vertically aligned carbon nanotubes on field emission properties. Applied Physics Letters, 82(20), 3520-3522.

Kinoshita, T., Karita, M., Nakano, T., & Inoue, Y. (2019). Two step floating catalyst chemical vapor deposition including in situ fabrication of catalyst nanoparticles and carbon nanotube forest growth with low impurity level. Carbon, 144, 152-160.

Manawi, Y. M., Samara, A., Al-Ansari, T., & Atieh, M. A. (2018). A review of carbon nanomaterials’ synthesis via the chemical vapor deposition (CVD) method. Materials, 11(5), 822.

Nassoy, F., Pinault, M., Descarpentries, J., Vignal, T., Banet, P., Coulon, P. E., ... & Mayne-L’Hermite, M. (2019). Single-step synthesis of vertically aligned carbon nanotube forest on aluminium foils. Nanomaterials, 9(11), 1590.

Rafique, I., Kausar, A., Anwar, Z., & Muhammad, B. (2016). Exploration of epoxy resins, hardening systems, and epoxy/carbon nanotube composite designed for high performance materials: A review. Polymer-Plastics Technology and Engineering, 55(3), 312-333.

Raji, A. R. O., Villegas Salvatierra, R., Kim, N. D., Fan, X., Li, Y., Silva, G. A., ... & Tour, J. M. (2017). Lithium batteries with nearly maximum metal storage. ACS nano, 11(6), 6362-6369.

Shi, W., & Plata, D. L. (2018). Vertically aligned carbon nanotubes: Production and applications for environmental sustainability. Green Chemistry, 20(23), 5245-5260.

Wang, G. X., Ahn, J. H., Yao, J., Lindsay, M., Liu, H. K., & Dou, S. X. (2003). Preparation and characterization of carbon nanotubes for energy storage. Journal of power sources, 119, 16-23.

Yaglioglu, O., Cao, A., Hart, A. J., Martens, R., & Slocum, A. H. (2012). Wide range control of microstructure and mechanical properties of carbon nanotube forests: a comparison between fixed and floating catalyst CVD techniques. Advanced Functional Materials, 22(23), 5028-5037.

Yesilbag, Y. O., Yesilbag, F. N. T., Huseyin, A., Tuzluca, M., Ismail, I., & Ertugrul, M. (2021). Synthesis and characterization of graphene/carbon nanotube hybrid: effects of Ni catalyst thickness and H2 flow rate on growth and morphological structure. Journal of Materials Science: Materials in Electronics, 32(6), 7943-7955.

Yilmaz, M., Raina, S., Hsu, S. H., & Kang, W. P. (2017). Growing micropatterned CNT arrays on aluminum substrates using hot-filament CVD process. Materials Letters, 209, 376-378.

Kaynak Göster

APA Yeşilbağ, Y. Ö. , Tuzluca, F. N. , Hüseyin, A. , Salıh, A. J. & Demirez, E. N. (2022). Large-area synthesis of vertically aligned carbon nanotubes growth on the aluminum foil via FCCVD method . Erzincan University Journal of Science and Technology , 15 (1) , 296-303 . DOI: 10.18185/erzifbed.1036126