Çan Linyitinin Sorgum Biyokütlesi İle Gazlaştırılmasında Biyokütle Oranı ve Sıcaklığın Etkisi

Çan linyiti ve sorgum biyokütlesi farklı oranlarda sorgum içerecek şekilde karıştırılarak, 700°C sıcaklıkta birlikte gazlaştırılmış ve karışımdaki sorgum oranının toplam gaz hacmi ile gaz ürün dağılımına etkileri incelenmiştir. Hem toplam gaz hacmi hem de üretilen hidrojen gazının miktarı açısından en etkin sorgum konsantrasyonu % 25 olarak belirlenmiştir. %25 sorgum içeren kömür/sorgum karışımı, 700, 800 ve 900 °C sıcaklıklarda gazlaştırılarak, sıcaklık artışının toplam gaz hacmi ve gaz ürün dağılımındaki etkileri incelenmiştir. En etkin gazlaştırma sıcaklığı 900 °C olarak belirlenmiştir. %25 sorgum içeren 1 gram kömür/sorgum karışımının 900 °C sıcaklıkta birlikte gazlaştırılmasından %71,4 hidrojen gazı içeren 2729 mL gaz elde edilmiştir. 

The Effects of Biomass Ratio and Temperature on Co-Gasification of Çan Lignite with Sorghum Biomass

Co-gasification experiments of mixtures of Çan lignite and sorghum biomass containing different concentrations of sorghum were performed and the effects of biomass ratio in coal/biomass mixtures on total gas volumes and syngas product distributions were evaluated. The most effective sorghum concentration was determined as 25 %, in terms of both total gas volumes and hydrogen gas production volumes. he coal / sorghum mixture containing 25% sorghum was gasified at temperatures of 700, 800 and 900 ° C and the effects of temperature increase on total gas volume and gas product distribution were investigated. The most effective gasification temperature was determined as 900 ° C. 2729 mL of gas with 71.4% hydrogen gas was obtained by co-gasification of 1 gram of coal / sorghum mixture containing 25% sorghum at 900 ° C.

___

  • Brar, .JS., Singh, K., Wang, J., Kumar, S. 2012. “Gasification of Coal and Biomass: A review”, Int J Forestry Research, 363058,10.
  • Enerji Bakanlığı, “Kömür”. https://www.enerji.gov.tr/tr-tr/sayfalar/komur (Son erişim tarihi: 20.02.2016)
  • Hasanoğlu A., Meryemoglu, B., Kaya, B., Irmak, S., Erbatur, O. 2014. "Hydrogen Production From Aqueous-Phase Reforming Of Sorghum Biomass: An Application Of The Response Surface Methodology", Renewable energy, 62, 535-541.
  • Howaniec, N., Smolinski, A., Stanczyk, K., Pichlak, M. 2011. “Steam co–gasification of coal and biomass derived chars with synergy effects as an innovative way of hydrogen–rich gas production”, Int J Hydrogen Energy, 36(22), 14455–63.
  • Howaniec, N., Smolinski, A. 2013. “Steam co–gasification of coal and biomass– synergy in reactivity of fuel blends char”, Int J Hydrogen energy, 38(36), 16152–60.
  • Howainec, N., Smolinski, A. 2014. “Effect of fuel blend composition on the efficiency of hydrogen –rich gas production in co–gasification of coal and biomass”, Fuel, 128, 442–450.
  • Jeong, H.J., Hwang, I.S., Hwang, J. 2015. “Co–gasification of bituminous coal–pine sawdust blended char with H2O at temperatures of 750–850 °C”, Fuel, 156, 26–29.
  • Kumabe, K., Hanaoka, T., Fujimoto, S., Minowa, T., Sakanishi, K. 2007. “Co–gasification of woody biomass and coal with air and steam”, Fuel, 86 (5–6), 684–9.
  • Lapuerta, M., Hernandez, J.J., Pazo, A., Lopez, J. 2008. “Gasification and co–gasification of biomass wastes; effect of the biomass origin and the gasifier operating conditions”, Fuel Process Technol, 89, 828–37.
  • World Energy Council, “World Energy Resources 2016”, https://www.worldenergy.org/wp–content/uploads/2016/10/World–Energy–Resources–Full–report–2016.10.03.pdf (Son erişim tarihi: 07.09.2018).
  • Minchener, J.A. 2005. “Coal gasification for advanced power generation”, Fuel, 17, 2222–35.
  • Moore, T.A., Pearce, S. 2006. “Hydrogen from coal”, International Journal of Coal Geology 2006, 65 (3–4), 171–2.
  • Pinto, F., Franco, C., Andre´, R.N., Tavares, C., Dias, M., Gulyurtlu, I., et al. 2003. “Effect of experimental conditions on CO gasification of coal, biomass and plastics wastes with air/steam mixtures in a fluidized bed system”, Fuel, 82, 1967–76.
  • Rizkiana, J., Guan, G., Widayatno, W.B., Hao, X., Huang, W., Tsutsumi, A., Abudula, A. 2014. “Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures”, Fuel, 134, 414–9.
  • Seçer, A., Küçet, N., Fakı, E., Hasanoğlu, A. 2018. “Comparison of co–gaisification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production”, Int J Hydrogen energy, 43, 21269–78.
  • Stiege,l G.J., Ramezan, M. 2006. “Hydrogen from coal Gasification:An economical pathway to a sustainable future”, International journal of coal geology, 65 (3–4), 173–90.
  • Velez, F.J., Chejne, F., Valdes, C.F., Emery, E.J., Londono, C.A. 2009. “Co–gasification of Colombian coal and biomass in fluidized bed: An experimental study”, Fuel, 88(3), 424–430.
  • Veraa, M.J., Bell, A.T. 1978. “Effect of alkali metal catalysts on gasification of coal char”, Fuel, 57 (4), 194–200.