Biyokütle Kaynaklı Sentez Gazından Hidrojen Üretimine Entegre Bir Güç Sisteminin Modellenmesi

Ülkemizde bazı bölgelerde bulunan zengin jeotermal enerji kaynaklarının değerlendirilmesi, yerli ve yenilenebilir enerji üretimine imkân vermektedir. Aynı zamanda, bu bölgelerde önemli miktarlarda biyokütle atık potansiyellerinin bulunması, bir enerji taşıyıcısı olan hidrojen gazı üretimi için de kaynak oluşturmaktadır. Biyokütlenin gazlaştırılması sonucunda elde edilen sentez gazı kullanılarak yüksek saflıkta hidrojen üretimi yapılabilmektedir. Bu çalışma kapsamında, jeotermal ve biyokütle enerji kaynaklarının birlikte değerlendirilmesi hedeflenmiştir. Jeotermal kaynaklara sahip olan Manisa Alaşehir bölgesinde kurulabilecek biyokütle kaynaklı sentez gazından hidrojen üretimine entegre bir güç üretim sistemi modellenmiştir. Bunun için, sentez gazı debisi 3 kg/s olarak belirlenmiştir. Bu temelde, önerilen sistemin, Aspen HYSYS simülasyon programı kullanılarak benzetimi yapılmış ve sistemin yapılabilirliği araştırılmıştır. Benzetim ve analiz çalışmaları sonucunda, belirlenen kapasite için, hidrojen üretim sistemi ile birleşik tasarlanan bir organik Rankine çevrimi kullanılarak 729 kWe elektrik enerjisi üretilebilmektedir. Bu sayede, hidrojen üretim prosesinin tükettiği enerjinin bir kısmı karşılanabilmektedir. Bununla birlikte, ilave edilen jeotermal kaynaklı bir güç santrali ile de geri kalan enerji ihtiyacı sağlanabilmektedir. Önerilen sistemin kendi iç tüketimi toplamda 14.886 kWe’dir. Organik Rankine ve jeotermal kaynaklı güç çevrimlerinin toplam gücü ise 47.649 kWe olarak bulunmuştur. Bu çalışmanın, biyokütle ve diğer yenilenebilir kaynakları içeren benzer hibrit sistemlerin ön tasarım çalışmalarına katkı sağlayabileceği değerlendirilmektedir.  

Modeling of an Integrated Power System to Hydrogen Production from Biomass-Derived Synthesis Gas

The assessment of the rich geothermal energy sources in some regions of our country enables domestic and renewable energy production. At the same time, the availability of significant biomass waste potentials in these regions is also a source of hydrogen gas production, an energy carrier. As a result of the gasification of the biomass, high purity hydrogen can be produced using the synthesis gas obtained. In this study, geothermal and biomass energy resources are aimed to be evaluated together. A power generation system integrated with hydrogen production from a biomass-derived synthesis gas, which can be installed in the Manisa Alaşehir region, which has geothermal resources, is modeled. For this, the synthesis gas content was determined to be 3 kg/s. On this basis, the proposed system is simulated using the Aspen HYSYS simulation software and the feasibility of the system is investigated. As a result of simulation and analysis studies, 729 kWe of electric energy can be generated for an established capacity using an organic Rankine cycle designed with the hydrogen production system. Thus, some of the energy consumed by the hydrogen production process can be met. Furthermore, the remaining energy requirement can be achieved with the installed geothermal power plant. The proposed system has a total internal consumption of 14,886 kWe. The total power of Organic Rankine and geothermal power cycles is 47,649 kWe. It is assessed that this work may contribute to preliminary design studies of similar hybrid systems including biomass and other renewable resources.

___

  • Adamson, K. 2004. “Hydrogen from renewable–the hundred year commitment”, Energy Policy, 32, 1231-1242.
  • Asadullah M. 2014. “Biomass gasification gas cleaning for downstream applications: A comparative critical review”, Renewable and Sustainable Energy Reviews 40, 118–132.
  • Bac, S., Keskin, S., Avci, A. 2018. “Modeling and simulation of water-gas shift in a heat exchange integrated microchannel converter”, International Journal of Hydrogen Energy, 43, 1094-1104.
  • Bai, Z., Liu, Q., Lei, J., Hong, H., Jin, H. 2017. “New solar-biomass power generation system integrated a two-stage gasifier”, Applied Energy, 194, 310–319.
  • Bhattacharya, P. and Dey, S. 2014. ''An Update Technology for Integrated Biomass Gasification Combined Cycle Power Plant'', Applied Solar Energy, 50(1), 44–48.
  • Ersoz, A., Çetin Durak, Y., Sarıoğlan, A., Turan, A.Z., Mert, M.S., Yüksel, F., Figen, H.E., Güldal, N.O., Karaismailoglu, M., Baykara, S.Z. 2018. “Investigation of a novel & integrated simulation model for hydrogen production from lignocellulosic biomass.'' International Journal of Hydrogen Energy, 43(2),1081-1093.
  • Franzoni, A., Galanti, L., Traverso, A., Massardo, A.F. 2009. “Integrated Systems for Electricity and Hydrogen Co-production from Coal and Biomass”, International Journal of Thermodynamics 12(2), 97-104.
  • Desai, N.B., Bandyopadhyay, S. 2009. “Process integration of organic Rankine cycle”, Energy 34 1674–1686.
  • Majoumerd, M.M. , De, S., Assadi, M., Breuhaus, P. 2012. “An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas: Simulation results for the baseline configuration”, Applied Energy, 99, 280–290.
  • Nooruddin, O. 2011. ''Simulation and Optimization of IGCC Technique for Power Generation and Hydrogen Production by Using Lignite Thar Coal and Cotton Stalk'', Yüksek Lisans Tezi, Lappeenranta Unıversity of Technology Faculty of Technology Master’s Degree Programme in Chemical and Process Engineering, Lappeenranta, 69-72.
  • Chen, P.C., Chiu, H.M., Chyou, Y.P. 2012. ''Process analysis study of integrated gasification combinedcycle with CO2 capture'', Procedia Engineering, 42, 1502 – 1513.
  • Pernaa, A., Minutillob, M., Cicconardia, S.P., Jannellib, E., Scarfoglierob, S. 2015. ''Conventional and advanced biomass gasification power plants designed for cogeneration purpose'', Energy Procedia 82, 687–694.
  • Paengjuntueka, W., Boonmaka, J., Mungkalasirib, J. 2015. ''Energy Efficiency Analysis in An Integrated Biomass Gasification Fuel Cell System”, Energy Procedia 79, 430-435.
  • Salkuyeh, Y.K., Elkamel, A., The, J., Fowler, M. 2016. “Development and techno-economic analysis of an integrated petroleum coke, biomass, and natural gas polygeneration process”, Energy, 113, 861-874.
  • Sircar S. (1989) “Pressure Swing Adsorption Technology”, In: Rodrigues A.E., LeVan M.D., Tondeur D. (eds) Adsorption: Science and Technology. NATO ASI Series (Series E: Applied Sciences), vol 158. Springer, Dordrecht, 285-321.
  • Yılmaz S., Selim H., 2013. “A review on the methods for biomass to energy conversion systems design”, Renewable Sustainable Energy Rev, 25, 420–30.
  • Yenilenebilir Enerji Genel Müdürlüğü. “Türkiye biyokütle enerjisi potansiyeli atlası (BEPA)”, http://bepa.yegm.gov.tr/ Son erişim tarihi: 10.06.2018
Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 1307-9085
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2008
  • Yayıncı: Erzincan Binali Yıldırım Üniversitesi, Fen Bilimleri Enstitüsü