Kapsüllenmiş Faz Değiştiren Malzemelerin Sıcak Su Tankları İçerisindeki Konumlarının Isıl Enerji Depolama Performansı Üzerindeki Etkisi

Güneş enerjili sıcak su sistemleri yenilenebilir enerji ve ısıl enerji depolama uygulamalarının bilinen ve yaygın türlerinden biridir. Güneş enerjili sıcak su sistemlerinde kullanılan sıcak su tanklarının ısıl enerji depolama kapasitesini arttırmak için tank içerisine faz değiştiren malzeme yerleştirmek yaygın bir yöntemdir. Bu çalışmada, kapsüllenmiş parafinlerin tank içerisindeki konumlarının ısıl enerji depolama performansı üzerindeki etkisi deneysel olarak araştırılmıştır. Parafin kapsüllerin tank tabanından 0, 200, 400, 600 ve 800 mm mesafede yerleştirilmiştir. Yapılan çalışmanın sonucunda, parafin kapsüllerinin tank içerisinde sıcak su bölgesinin başladığı konumdan itibaren yerleştirilmesinin tanktan elde edilen sıcak su miktarını arttırdığı gözlenmiştir. Kapsüller tank tabanından 400 mm mesafede yerleştirilmesi durumda tanktan 639 litre sıcak su elde edilmiştir. Parafin kapsüllerinin konumunun 0 mm olması durumunda ise 619 litre sıcak su elde edilmiştir. 400 mm’ye kadar elde edilen sıcak su miktarı artış gösterirken, 600 mm’den sonra tanktan elde edilen sıcak su miktarı düşmüştür.

___

  • Acar, C. 2018. A comprehensive evaluation of energy storage options for better sustainability. International Journal of Energy Research, 42(12), 3732-3746. doi:10.1002/er.4102
  • Agresti, F., Fedele, L., Rossi, S., Cabaleiro, D., Bobbo, S., Ischia, G., & Barison, S. 2019. Nano-encapsulated PCM emulsions prepared by a solvent-assisted method for solar applications. Solar Energy Materials and Solar Cells, 194, 268-275. doi:10.1016/j.solmat.2019.02.021
  • Akgün, M., Aydın, O., Kaygusuz, K. 2007. Experimental study on melting/solidification characteristics of a paraffin as PCM. Energy Conversion and Management, 48(2), 669-678. doi:10.1016/j.enconman.2006.05.014
  • Alva, G., Liu, L., Huang, X., Fang, G. 2017. Thermal energy storage materials and systems for solar energy applications. Renewable and Sustainable Energy Reviews, 68, 693-706. doi:10.1016/j.rser.2016.10.021
  • Arslan, M., Igci, A. A. 2015. Thermal performance of a vertical solar hot water storage tank with a mantle heat exchanger depending on the discharging operation parameters. Solar Energy, 116, 184-204. doi:10.1016/j.solener.2015.03.045
  • Dehghan, A. A., Barzegar, A. 2011. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation. Energy Conversion and Management, 52(1), 468-476. doi:10.1016/j.enconman.2010.06.075
  • Dincer, I., Rosen, M. A. 2011. Thermal Energy Storage Systems and Applications: Wiley and Sons, Ltd., Publication.
  • Elias, C. N., Stathopoulos, V. N. 2019. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage. Energy Procedia, 161, 385-394. doi:10.1016/j.egypro.2019.02.101
  • Erdemir, D., Altuntop, N. 2016. Effect of thermal stratification on energy and exergy in vertical mantled heat exchanger. International Journal of Exergy, 20(1), 105-121. doi:10.1504/ijex.2016.076681
  • Essa, M. A., Mostafa, N. H., Ibrahim, M. M. 2018. An experimental investigation of the phase change process effects on the system performance for the evacuated tube solar collectors integrated with PCMs. Energy Conversion and Management, 177, 1-10. doi:10.1016/j.enconman.2018.09.045
  • Fazilati, M. A., Alemrajabi, A. A. 2013. Phase change material for enhancing solar water heater, an experimental approach. Energy Conversion and Management, 71, 138-145. doi:10.1016/j.enconman.2013.03.034
  • Feliński, P., Sekret, R. 2016. Experimental study of evacuated tube collector/storage system containing paraffin as a PCM. Energy, 114, 1063-1072. doi:10.1016/j.energy.2016.08.057
  • Frazzica, A., Manzan, M., Sapienza, A., Freni, A., Toniato, G., Restuccia, G. 2016. Experimental testing of a hybrid sensible-latent heat storage system for domestic hot water applications. Applied Energy, 183, 1157-1167. doi:10.1016/j.apenergy.2016.09.076
  • He, Z., Wang, X., Du, X., Amjad, M., Yang, L., Xu, C. 2019. Experiments on comparative performance of water thermocline storage tank with and without encapsulated paraffin wax packed bed. Applied Thermal Engineering, 147, 188-197. doi:10.1016/j.applthermaleng.2018.10.051
  • Huang, H., Wang, Z., Zhang, H., Dou, B., Huang, X., Liang, H., Goula, M. A. 2019. An experimental investigation on thermal stratification characteristics with PCMs in solar water tank. Solar Energy, 177, 8-21. doi:10.1016/j.solener.2018.11.004
  • Kahwaji, S., Johnson, M. B., Kheirabadi, A. C., Groulx, D., White, M. A. 2018. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications. Energy, 162, 1169-1182. doi:10.1016/j.energy.2018.08.068
  • Kılıçkap, S., El, E., Yıldız, C. 2018. Investigation of the effect on the efficiency of phase change material placed in solar collector tank. Thermal Science and Engineering Progress, 5, 25-31. doi:10.1016/j.tsep.2017.10.016
  • Mazman, M., Cabeza, L. F., Mehling, H., Nogues, M., Evliya, H., Paksoy, H. Ö. 2009. Utilization of phase change materials in solar domestic hot water systems. Renewable Energy, 34(6), 1639-1643. doi:10.1016/j.renene.2008.10.016
  • Meng, Z. N., Zhang, P. 2017. Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM. Applied Energy, 190, 524-539. doi:https://doi.org/10.1016/j.apenergy.2016.12.163
  • Nkwetta, D. N., Vouillamoz, P.-E., Haghighat, F., El-Mankibi, M., Moreau, A., Daoud, A. 2014. Impact of phase change materials types and positioning on hot water tank thermal performance: Using measured water demand profile. Applied Thermal Engineering, 67(1), 460-468. doi:https://doi.org/10.1016/j.applthermaleng.2014.03.051
  • Parhizi, M., Jain, A. 2019. The impact of thermal properties on performance of phase change based energy storage systems. Applied Thermal Engineering, 114154. doi:https://doi.org/10.1016/j.applthermaleng.2019.114154
  • Prakash, J., Roan, D., Tauqir, W., Nazir, H., Ali, M., Kannan, A. 2019. Off-grid solar thermal water heating system using phase-change materials: design, integration and real environment investigation. Applied Energy, 240, 73-83. doi:https://doi.org/10.1016/j.apenergy.2019.02.058
  • Sharif, M. K. A., Al-Abidi, A. A., Mat, S., Sopian, K., Ruslan, M. H., Sulaiman, M. Y., Rosli, M. A. M. 2015. Review of the application of phase change material for heating and domestic hot water systems. Renewable and Sustainable Energy Reviews, 42, 557-568. doi:https://doi.org/10.1016/j.rser.2014.09.034
  • Thantong, P., Chantawong, P. 2017. Experimental Study of Solar - Phase Change Material Wall for Domestic Hot Water Production under the Tropical Climate. Energy Procedia, 138, 38-43. doi:https://doi.org/10.1016/j.egypro.2017.10.042
  • Thantong, P., Khedari, J., Chantawong, P. 2018. Study of Solar– PCM Walls for domestic hot water production under the tropical climate of Thailand. Materials Today: Proceedings, 5(7, Part 1), 14880-14885. doi:https://doi.org/10.1016/j.matpr.2018.04.023
  • Wang, Z., Zhang, H., Huang, H., Dou, B., Huang, X., Goula, M. A. 2019. The experimental investigation of the thermal stratification in a solar hot water tank. Renewable Energy, 134, 862-874. doi:https://doi.org/10.1016/j.renene.2018.11.088
  • Yang, H., Song, J., He, B., Ding, G. 2019. Numerical study on charging characteristics of heat pipe-assisted cylindrical capsule for enhancing latent thermal energy storage. Solar Energy, 190, 147-155. doi:https://doi.org/10.1016/j.solener.2019.08.007
  • Zachár, A. 2015. Investigation of a new helical flow distributor design to extract thermal energy from hot water storage tanks. International Journal of Heat and Mass Transfer, 80, 844-857. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.055
  • Zhou, Z., Liu, J., Wang, C., Huang, X., Gao, F., Zhang, S., Yu, B. 2018. Research on the application of phase-change heat storage in centralized solar hot water system. Journal of Cleaner Production, 198, 1262-1275. doi:https://doi.org/10.1016/j.jclepro.2018.06.281
  • BAYKIM Chemicals. 2019. Erişim tarihi: 18.08.2019., Available from: http://www.baykim.com.tr/tr-TR/12-22/3/10/66/.