S235 Yapı Çeliğinin Tozaltı Kaynağında Toz Türünün Mekanik ve Mikroyapısal Özelliklere Etkileri

S235 ince taneli yapı çelikleri; bilhassa akma mukavemeti değerlerinin en az 235 megapaskal istendiği yapılar, fabrikalar ve makine parçalarında tercih edilmektedir. Düşük alaşımlı çelik gruplarında sınıflandırıldıklarından bu alaşımların fiyatlarının ucuz oluşu tüketimlerinin artmasını da beraberinde getirmiştir. Bu çalışmada; 15 mm kalınlığındaki S235 Yapı çeliği 2 farklı kaynak tozu kullanılarak tozaltı kaynak yöntemiyle kaynak edilmiştir. Kaynak tozu bileşiminin kaynak edilmiş S235 çelik alaşımının mikro-yapısal ve mekanik özellikleri üzerindeki etkileri incelenmiştir. Bu iki tür kaynak tozunun karşılaştırılması amacıyla; ana malzeme ve kaynaklı bağlantının ısının tesiri altındaki bölgeleri ve kaynak metalinin mikro-vikers sertlik taramaları, enine çekme deneyleri, mikroyapısal incelemeler uygulanmıştır.

The Effects of Flux Type on Mechanical and Microstructural Properties of S235 Structural Steel by Submerged Arc Welding

S235 fine grained steel alloys are demanded especially in structural components of buildings, factories and mechanical parts of machines where yield strength values approximately close to minimum 235 mega-pascals are in concern. As they are classified in low alloyed steel groups, in consequence of the cheapness of these alloys their consumption is increasing as well. In this work; 15mm of S235 structural steel is submerged arc welded by 2 types of welding fluxes. The effects of flux composition on microstructural and mechanical properties of welded S235 steel alloy are examined. Micro-vickers hardness surveys of base metal and heat affected zones with weld metals, transverse tensile tests and micro-structural investigations are applied for comparison of these two types of welding fluxes.

___

  • ASM Metals Handbook, Welding, Brazing and Soldering 1993, Volume 6, p1059.
  • TS EN 10025-2, Hot-rolled Products of structural steels, 2006, Part 2.
  • D.W. Cho, D. V. Kiran, S.J. Na, Analysis of molten pool behavior by flux-wall guided metal transfer in low-current submerged arc welding process, International Journal of Heat and Mass Transfer, doi: 10.1016/j.ijheatmasstransfer.2017.02.060, 110, 2017, p.104-112.
  • M. A. Ahmad, A. K. Sheikh, K. Nazir, Design of experiment based statistical approaches to optimize submerged arc welding process parameters, ISA Transactions, doi:10.1016/j.isatra.2019.04.003, 94, 2019, p. 307–315.
  • M. Sailender, R. Suresh, G. C. Reddy, S. Venkatesh, Prediction and comparison of the dilution and heat affected zone in submerged arc welding (SAW) of low carbon alloy steel joints, Measurement, doi:10.1016/j.measurement.2019, 107084.150, 2020.
  • L. Sharma, R. Chhibber, Investigating the physicochemical and thermophysical properties of submerged arc welding fluxes designed using TiO2-SiO2-MgO and SiO2-MgO-Al2O3 flux systems for line-pipe steels, Ceramics International, doi:10.1016/j.ceramint.2018.10.032, 45 2019, 1569–1587.
  • P. Kanjilal, T.K. Pal, S.K. Majumdarc, Combined effect of flux and welding parameters on chemical composition and mechanical properties of submerged arc weld metal, Journal of Materials Processing Technology, doi:10.1016/j.jmatprotec.2005.06.083, 171, 2006, 223–231.
  • Juan Pua, S. Yua, Y. Lib, Role of inclusions in flux aided backing submerged arc welding, Journal of Materials Processing Technology, dx.doi.org/10.1016/j.jmatprotec.2016.09.016, 240, 2017, 145–153.
  • K. Li, Z. Wu, Y. Zhu, C. Liu, Journal of Materials Processing Technology, doi:10.1016/j.jmatprotec.2017.02.004, 244, 2017, 314–319.
  • A.G. Osorioa, D. Souzab, T. dos Passosb, L. Dalpiazb, T. Airesa, Effect of niobium addition on the flux of submerged arc welding of low carbon steels, Journal of Materials Processing Technology, doi:10.1016/j.jmatprotec.2018.10.020, 266, 2019, 46–51.
  • J. Winczeka, R. Parkitny, Modelling of heat affected zone in submerged arc welding butt joint with thorough penetration, Procedia Engineering, doi: 10.1016/j.proeng.2017.02.195, 177, 2017, 241 – 246.
  • T. Sirisatiena, S. Mahabunphachaib, K. Sojiphana, Effect of submerged arc welding process with one-side one-pass welding technique on distortion behavior of shipbuilding steel plate ASTM A131 grade A, Materials Today: Proceedings 5, 2018, 9543–9551.
  • S. Choudharya, R. Shandleya, A Kumara, Materials Today: Proceedings 5, 2018, 5049–5057.
  • EN ISO 9015-2, Destructive tests on welds in metallic materials, Hardness testing, Part 2, 2016, Micro-hardness testing of welded joints.
  • ASM Metals Handbook Volume 9, Metallography and Microstructures, 2004, ASM International
  • AWS B4.0: 2016, Standard test methods for mechanical testing of welds.
  • TS EN ISO 14171, 2016, Welding consumables, Solid wire electrodes, tubular cored electrodes, and electrode/flux combinations for submerged arc welding of non alloy and fine grain steels.
  • TS EN ISO 14174, 2012, Welding consumables, fluxes for submerged arc welding and electro-slag welding.
  • EWF, IIW, Welding Engineering Course Notes 2005, GSI SLV München, Germany.
  • Kou S. Welding Metallurgy, 2nd Edition, 2003, New York, John Wiley and Sons. p232-238.
  • Reeve, L., 1939, “Metallurgy of ferrous welding”, Note on Cambridge Welding Conference, Transactions of the Institute of Welding, Vol. II p7-18.
  • Dearden, J. and O’Neill, H., 1940, “A guide to the selection and welding of low alloy strucutural steels”, Transactions of the Institute of Welding, Vol III, p.203-214.