Fiber takviyeli polimer sargılar ile güçlendirilmiş hasarlı betonların mekanik özellikleri

Çalışmada, üç farklı kalınlıkta (50, 100 ve 150 mm) ve CFRP sargılı fiber takviyeli polimer (FRP) kullanılarak güçlendirilmiş hasarlı betonların davranışını ve kırılma davranışlarını incelemeyi amaçlamaktadır. Hasar görmüş betonun mekanik performansı, tek eksenli yük testleri altında CFRP kompozitler kullanılarak değerlendirilmiştir. Güçlendirilmiş, sargılı hasarlı beton numunelerinin, basınç dayanımı, göçme modları ve çatlak modelleri açısından, hasarlı kontrol beton numune ile karşılaştırılmıştır. Toplam 8 farklı hasarlı ve hasar görmemiş örnekler test edilmiştir; bu örneklerden biri kontrol hasarlı numune olarak diğer örnekler ise CFRP'nin farklı kesit ve kalınlıkta konfigürasyonları uygulanmıştır. Sonuçlar, sargılı hasarlı numunelerin karşılık gelen kontrol hasarlı numuneler ile karşılaştırıldığında daha yüksek dayanımı sergilediğini belirlenmiştir. Güçlendirilmiş beton numune, kırılma moduna bağlı olarak daha sünek davranış sergilemiştir. 10 mm kalınlıkta CFRP kullanılarak güçlendirilen numunede, bu kompozitlerin daha yüksek mukavemet göstermesi nedeniyle nihai yükte önemli bir artış gözlenmiştir.

Mechanical properties of confined damaged concrete strengthened with fiber reinforced polymer wraps

This study aims to investigate behavior and failure modes of damaged concrete strengthened using fibre reinforced polymer (FRP) with three different thickness (50, 100 and 150 mm) and different configurations of CFRP wraps. The mechanical performance of damaged concretes was evaluated utilizing carbon fibre reinforced polymer (CFRP) composites under compression tests. The strengthened confined damaged concrete specimen was compared with unconfined damaged concrete in terms of compressive strength, failure modes, and cracks patterns. A total of 8 different damaged and undamaged specimens were tested, with one of these specimens acting as a control damage specimen sand the remaining specimens wrapped with different cross‐section configurations of CFRP by different wrapping schemes. The results revealed that the partially-wrapped damaged specimens exhibited a higher compressive strength as compared to the corresponding control damaged specimens. The strengthened confined concrete specimen displayed more ductile behavior, which depends on the failure mode. As a result of using the 10-mm thickness of CFRP, a significant increase in the ultimate load was observed due to the high strength of the composites.

___

  • [1]. Júlio E.S, Branco F., Silva V.D, (2003), Structural rehabilitation of columns using reinforced concrete jacketing, Prog. Struct. Engng. Mater, 5 : 29-37
  • [2]. Bakis C.E., Bank L.C., Brown V.L., Cosenza E., Davalos J.F., Lesko J.J., et al. (2002), Fiber-reinforced polymer composites for construction state-of-the-art review, J Compos Construct ASCE, 6 (2): 73-87
  • [3]. Teng J.G., Chen J.F., Smith S.T., Lam L. (2003) Behaviour and strength of FRP-strengthened RC structures: a state-of-the-art review ICE Proc: Struct Bldgs, 156 (1):51-62
  • [4]. Karabinis A.I., Rousakis T.C.(2002) Concrete confined by FRP material: a plasticity approach, ASCE J Eng Struct, 24 (7):923-932
  • [5]. Castro P, Carino NJ (1998) Tensile and nondestructive testing of FRP bars. J Compos Constr 2(1):17–27
  • [6]. Schmidt J.W., Bennitz A., Taljsten B., Goltermann P., (2012), Mechanical anchorage of FRP tendons – a literature review, Constr Build Mater, 32:110-121
  • [7]. Zhou H.J., Lu J.L., Xi X., Dong B.Q., Xing F., (2015), Effects of stirrup corrosion on bond-slip performance of reinforcing steel in concrete: an experimental study, Constr. Build. Mater, 93: 257-266
  • [8]. Lee H.S., Kage T., Noguchi T., Tomosawa F. (2003) An experimental study on the retrofitting effects of reinforced concrete columns damaged by rebar corrosion strengthened with carbon fiber sheets, Cem. Concr. Res., 33 (4):563-570
  • [9]. Yang Y.Q., Wang X., Wu Z.S., (2020), Long-span cable-stayed bridge with hybrid arrangement of FRP cables, Compos Struct, 237: 111966
  • [10]. Tabatabaiefar H.R., Massumi A., (2010) A simplified method to determine seismic responses of reinforced concrete moment esisting building frames under influence of soil–structure interaction, Soil Dynamics and Earthquake Engineering, 30 (11):1259-1267
  • [11]. Eslami A., Ronagh H. (2013) Effect of FRP wrapping in seismic performance of RC buildings with and without special detailing–A case study, Compos Part B Eng, 45 (1):1265-1274
  • [12]. Paal S.G., Jeon J.S., Brilakis I., DesRoches R., (2015) Automated damage index estimation of reinforced concrete columns for post-earthquake evaluations, J Struct Eng, 141:04014228.
  • [13]. Colomb F., Tobbi H., Ferrier E., Hamelin P., (2008) Seismic retrofit of reinforced concrete short columns by CFRP materials, Compos Struct, 82 (4): 475-487
  • [14]. Junaid M.T., Elbana A., Altoubat S., (2020) Flexural response of geopolymer and fiber reinforced geopolymer concrete beams reinforced with GFRP bars and strengthened using CFRP sheets, Structures, 24: 666-677.
  • [15]. Erberik M.A. (2008) Fragility-based assessment of typical mid-rise and low-rise RC buildings in Turkey. Eng. Struct. 30(5):1360–1374.
  • [16]. Gu D.S, Wu Y.F., Wu G., Wu Z.S., (2012) Plastic hinge analysis of FRP confined circular concrete columns. Construct. Build. Mater, 27(1): 223-233.
  • [17]. Raoof S.M., Koutas L.N, Bournas D.A. (2017) Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams Construct. Build. Mater. 151 (1):279-291.
  • [18]. Camata G., Spacone E., Al-Mahaidi R., Saouma V., (2004). Analysis of test specimens for cohesive near-bond failure of fiber-reinforced polymer-plated concrete, J. Compo. Constr., 8(6): 528–538.
  • [19]. Amran Y.H.M., Alyousef R, Rashid R.S.M., Alabduljabbar H., Hung C.C. (2018), Properties and applications of FRP in strengthening RC structures: a review Structures, 16, 208-238.
  • [20]. Wu, G., Lu, Z., Wu, Z. (2006) Strength and ductility of concrete cylinders confined with FRP composites, Construct. Build. Mater, 20 3:134-148.
  • [21]. ASTM C39 / C39M-12. Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA, 2012.
  • [22]. Zeyad A.M., Khan A.H., Tayeh B.A. (2020) Durability and strength characteristics of high-strength concrete incorporated with volcanic pumice powder and polypropylene fibers, J. Mater. Res. Technol., 9 (1)
  • [23]. Niu D., Su L., Luo Y., et al. (2020), Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete Constr. Build. Mater., 237: 117628.
  • [24]. Feng C., Janssen H., (2018) Hygric properties of porous building materials (III): impact factors and data processing methods of the capillary absorption test, Build. Environ. 134:21–34.
  • [25]. Zhang P., Wittmann F.H., Vogel M., et al., (2017) Influence of freeze-thaw cycles on capillary absorption and chloride penetration into concrete, Cement Concr. Res. 100: 60–67.
  • [26]. Saberi H., Hatami F., Rahai A. (2021), On axial compressive behavior of steel fiber reinforced concrete confined by FRP, Adv. Struc.Eng.https://doi.org/10.1177/1369433220981658
  • [27]. Li, G. (2006) Experimental study of FRP confined concrete cylinders, Eng. structures, 28 7:1001-1008.
  • [28]. Wu, G., Lü, Z., Wu, Z.: Strength and ductility of concrete cylinders, confined with FRP composites, Construction and Building, Materials, 20 (2006) 3, pp. 134-148.
  • [29]. Chen J.F., Xie J.K., Tao Y., Li X.Q. (2015). A review of FRP strengthened concrete structures under extreme loading. International Conference on Performance-based and Life-cycle Structural Engineering.
  • [30]. Lee W.T., Chiou Y.J., Shih M.H., (2010). Reinforced Concrete Beam–Column Joint Strengthened With Carbon Fiber Reinforced Polymer. Elsevier, Composite Structures, 92:pp:48- 60.
  • [31]. Al-Tersawy S.H., (2013) “Effect of fiber parameters and concrete strength on shear behavior of strengthened RC beams“, Constr. Build. Mater. 44:15-24.
  • [32]. Attari N., Amziane S., Chemrouk M., (2012) “Flexural strengthening of concrete beams using CFRP, GFRP and hybrid FRP sheets“, Constr. Build. Mater. 37:746-757.
  • [33]. Yang D.S., Park S.K., Neale K.W., (2009) “Flexural behaviour of reinforced concrete beams strengthened with prestressed carbon composites“, Compos. Struct. 88(4): 497-508.
  • [34]. Haddad R.H., Almomani O.A., (2017) “Recovering flexural performance of thermally damaged concrete beams using NSM CFRP strips, Constr. Build. Mater. 154:632-643.
  • [35]. Shannag M.J., Al-Akhras N.M., Mahdawi S.F., (2014) “Flexure strengthening of lightweight reinforced concrete beams using carbon fibre-reinforced polymers“, Struct. Infrastruct. Eng. 10:604-613.
  • [36]. Parvin, A., Jamwal, A.S. (2005) Effects of wrap thickness and ply configuration on composite-confined concrete cylinders, Compo. Struct., 67 4:437-442.
  • [37]. Bilotta A., Ceroni F., Di Ludovico M., Nigro E., Pecce M., Manfredi G., (2011) Bond efficiency of EBR and NSM FRP systems for strengthening concrete members, Journal of Composite for Construction, 15 (7):757-772
  • [38]. Zhang S.S., Teng J.G., Yu T., (2013) Bond–slip model for CFRP strips near-surface mounted to concrete, Eng. Struct., 56:945-953
  • [39]. Benzarti K., Chataigner S., Quiertant M., Marty C., Aubagnac C. (2011), Accelerated ageing behaviour of the adhesive bond between concrete specimens and CFRP overlays, Constr. Build. Mater., 25:523-538
  • [40]. Zeng J.J., Guo Y.C., Gao W.Y., Chen W.P., Li L.J., (2018) Stress-strain behavior of concrete in circular columns partially wrapped with FRP strips, Compos Struct, 200:810-828
  • [41]. Yu T., Lin G., Zhang S.S., (2016), Compressive behavior of FRP-confined concrete-encased steel columns, Compos. Struct., 154:493-506
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği