Bilyalı Öğütücü ile Üretilen Ekonomik Fe@Ni Alaşımların Boya Duyarlı Güneş Hücrelerinde Karşıt Elektrot Potansiyelinin Araştırılması

Boya duyarlı güneş hücreleri (DSSCs) sahip oldukları kolay üretim tekniği ve uygun maliyeti ile son yılların en çok araştırılan üçüncü nesil güneş hücreleri arasında yer almaktadır. DSSC mimarisinde karşıt elektrot olarak kullanılan platin (Pt) malzemesi yüksek maliyet ve düşük elektrokimyasal kararlılık nedeniyle alternatif karşıt elektrot malzeme arayışlarına neden olmuştur. Bu çalışmada, Pt malzemesine alternatif olarak demir@nikel (Fe@Ni) alaşımları uygun maliyetli ve kolay uygulanabilir bir yöntem olan bilyalı öğütme yöntemi ile üretilmiş ve hücre mimarisinde karşıt elektrot olarak kullanılmıştır. Farklı oranlarda Fe@Ni alaşımlarının üretildiği çalışmada, Fe:Ni (0,25:0,75) alaşımıyla üretilen hücrenin güç dönüşüm verimi %3,3 olarak elde edilmiştir. Bu değer Pt karşıt elektrot tabanlı referans hücrenin verim değerinden (%4,7) kısmen düşük olsa da yaklaşık maliyet değerleri göz önünde bulundurulduğunda Fe@Ni alaşımların DSSC teknolojisinin ticarileşmesi yolunda önemli bir potansiyel sunduğu görülmektedir. Yapılan bu çalışma, metal-bazlı ve uygun maliyetli alaşım malzemelerinin DSSC uygulamalarında alternatif karşıt elektrot malzemesi olarak değerlendirilmesinin önünü açmaktadır.

Investigation of the Potential of Economical Fe@Ni Alloys Produced by Ball Milling as Counter Electrode in Dye-Sensitized Solar Cells

Dye sensitized solar cells (DSSCs) with facile production technique and low cost are among the most investigated third generation solar cells. However, several alternative materials have been investigated as alternative due to high cost and low electrochemical stability of platinum (Pt) material being used as counter electrode in DSSC architecture. In this study, iron@nickel (Fe@Ni) alloys as alternative to Pt material were produced by cost-effective and facile applied ball milling method, and used as counter electrode in the cell architecture. In this study, different proportions of Fe@Ni alloys have been prepared and 3.3% of power conversion efficiency was achieved with Fe:Ni (0.25:0.75) alloy. Although it is slightly lower than the efficiency value of the Pt counter electrode-based reference cell (4.7%), considering the approximate cost values, it is seen that Fe@Ni alloys offer a significant potential for the commercialization of DSSC technology. This study paves the way for the evaluation of metal-based and cost-effective alloy materials as alternative counter electrode materials in DSSC applications.

___

  • [1]. Wagner, P. L., "General Energetics - Energy in the Biosphere and Civilization - Smil,V". Geogr Rev, 1993, 83 (1), 110-112.
  • [2]. Sil, D.; Chakrabarti, S., "Photocatalytic Degradation of PVC-ZnO Composite Film Under Tropical Sunlight and Artificial UV Radiation: A Comparative Study". Sol Energy, 2010, 84 (3), 476-485.
  • [3]. Akin, S., "Hysteresis-Free Planar Perovskite Solar Cells with a Breakthrough Efficiency of 22% and Superior Operational Stability over 2000 h". Acs Appl Mater Inter, 2019, 11 (43), 39998-40005.
  • [4]. Liao, C. Y.; Hsiao, Y. T.; Tsai, K. W.; Teng, N. W.; Li, W. L.; Wu, J. L.; Kao, J. C.; Lee, C. C.; Yang, C. M.; Tan, H. S.; Chung, K. H.; Chang, Y. M., "Photoactive Material for Highly Efficient and All Solution-Processed Organic Photovoltaic Modules: Study on the Efficiency, Stability, and Synthetic Complexity". Sol Rrl, 2021, 5 (3), 2000749.
  • [5]. Wang, A.; Chang, N. L.; Sun, K. W.; Xue, C. W.; Egan, R. J.; Li, J. J.; Yan, C.; Huang, J. L.; Rong, H.; Ramsden, C.; Hao, X. J., "Analysis of Manufacturing cost and Market Niches for Cu2ZnSnS4 (CZTS) Solar Cells". Sustain Energ Fuels, 2021, 5 (4), 1044-1058.
  • [6]. Akin, S.; Arora, N.; Zakeeruddin, S. M.; Gratzel, M.; Friend, R. H.; Dar, M. I., "New Strategies for Defect Passivation in High-Efficiency Perovskite Solar Cells". Adv Energy Mater, 2020, 10 (13), 1903090.
  • [7]. Shalan, A. E.; Akman, E.; Sadegh, F.; Akin, S., "Efficient and Stable Perovskite Solar Cells Enabled by Dicarboxylic Acid-Supported Perovskite Crystallization". J Phys Chem Lett, 2021, 12 (3), 997-1004.
  • [8]. Akin, S.; Akman, E.; Sonmezoglu, S., "FAPbI3-Based Perovskite Solar Cells Employing Hexyl-Based Ionic Liquid with an Efficiency Over 20% and Excellent Long-Term Stability". Adv Funct Mater, 2020, 30 (28), 2002964.
  • [9]. Akman, E.; Akin, S., "Poly(N,N '-bis-4-butylphenyl-N,N '-bisphenyl)benzidine-Based Interfacial Passivation Strategy Promoting Efficiency and Operational Stability of Perovskite Solar Cells in Regular Architecture". Adv Mater, 2021, 33 (2), 2006087.
  • [10]. Akman, E.; Shalan, A. E.; Sadegh, F.; Akin, S., "Moisture-Resistant FAPbI3 Perovskite Solar Cell with 22.25 % Power Conversion Efficiency through Pentafluorobenzyl Phosphonic Acid Passivation". Chemsuschem, 2021, 14 (4), 1176-1183.
  • [11]. Akman, E.; Altintas, Y.; Gulen, M.; Yilmaz, M.; Mutlugun, E.; Sonmezoglu, S., "Improving Performance and Stability in Quantum Dot-Sensitized Solar Cell through Single Layer Graphene/Cu2S Nanocomposite Counter Electrode". Renew Energ, 2020, 145, 2192-2200.
  • [12]. Akman, E., "Enhanced Photovoltaic Performance and Stability of Dye-Sensitized Solar Cells by utilizing Manganese-doped ZnO Photoanode with Europium Compact Layer". Journal of Molecular Liquids, 2020, 317, 114223.
  • [13]. Gnanasekar, S.; Kollu, P.; Jeong, S. K.; Grace, A. N., "Pt-Free, Low-Cost and Efficient Counter Electrode with Carbon Wrapped VO2(M) Nanofiber for Dye-Sensitized Solar Cells". Sci Rep-Uk, 2019, 9, 5177.
  • [14]. Wu, J. H.; Li, Y.; Tang, Q. W.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Meng, L. J., "Bifacial Dye-Sensitized Solar Cells: A Strategy to Enhance Overall Efficiency based on Transparent Polyaniline Electrode". Sci Rep-Uk, 2014, 4, 4028.
  • [15]. Papageorgiou, N., "Counter-Electrode Function in Nanocrystalline Photoelectrochemical Cell Configurations". Coordin Chem Rev, 2004, 248 (13-14), 1421-1446.
  • [16]. Saranya, K.; Rameez, M.; Subramania, A., "Developments in Conducting Polymer based Counter Electrodes for Dye-Sensitized Solar Cells - An Overview". Eur Polym J, 2015, 66, 207-227.
  • [17]. Lu, W. L.; Jiang, R.; Yin, X.; Wang, L. Y., "Porous N-doped-Carbon Coated CoSe2 Anchored on Carbon Cloth as 3D Photocathode for Dye-Sensitized Solar Cell with Efficiency and Stability Outperforming Pt". Nano Res, 2019, 12 (1), 159-163.
  • [18]. Liu, W. W.; Jiang, W.; Liu, Y. C.; Niu, W. J.; Liu, M. C.; Kong, L. B.; Lee, L.; Wang, Z. M. M.; Chueh, Y. L., "Interface Engineered Binary Platinum Free Alloy-based Counter Electrodes with Improved Performance in Dye-Sensitized Solar Cells". Sci Rep-Uk, 2020, 10 (1), 9157.
  • [19]. Zhang, Y. N.; Wang, P. F.; Zhang, T. Y.; Gou, B. W., "High-Efficiency Dye-Sensitized Solar Cells Based on Kesterite Cu2ZnSnSe4 Inlaid on a Flexible Carbon Fabric Composite Counter Electrode". Acs Omega, 2020, 5 (38), 24898-24905.
  • [20]. Sim, E.; Dao, V. D.; Choi, H. S., "Pt-Free Counter Electrode based on FeNi Alloy/Reduced Graphene Oxide in Liquid Junction Photovoltaic Devices". J Alloy Compd, 2018, 742, 334-341.
  • [21]. Zheng, X. J.; Deng, J.; Wang, N.; Deng, D. H.; Zhang, W. H.; Bao, X. H.; Li, C., "Podlike N-Doped Carbon Nanotubes Encapsulating FeNi Alloy Nanoparticles: High-Performance Counter Electrode Materials for Dye-Sensitized Solar Cells". Angew Chem Int Edit, 2014, 53 (27), 7023-7027.
  • [22]. Tang, Q. W.; Liu, J.; Zhang, H. H.; He, B. L.; Yu, L. M., "Cost-Effective Counter Electrode Electrocatalysts from Iron@Palladium and Iron@Platinum Alloy Nanospheres for Dye-Sensitized Solar Cells". J Power Sources, 2015, 297, 1-8.
  • [23]. Tang, Q. W.; Zhang, H. H.; Meng, Y. Y.; He, B. L.; Yu, L. M., "Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells". Angew Chem Int Edit, 2015, 54 (39), 11448-11452.
  • [24]. Barakat, N. A. M.; Akhtar, M. S.; Mohamed, I. M. A.; Abu Dakka, Y.; Hamdan, R.; El-Deen, A. G.; Elsaid, K.; Obaid, M.; Al-Meer, S., "Effective and Stable FeNi@ N-doped Graphene Counter Electrode for Enhanced Performance Dye Sensitized Solar Cells". Mater Lett, 2017, 191, 80-84.
  • [25]. Yi, H. M.; Lin, L.; Ling, M. X.; Lv, Z. Q.; Li, R.; Fu, Q.; Zhang, H. M.; Zheng, Q.; Li, X. F., "Scalable and Economic Synthesis of High-Performance Na3V2(PO4)2F3 by a Solvothermal-Ball-Milling Method". Acs Energy Lett, 2019, 4 (7), 1565-1571.
  • [26]. Wang, B.; Gao, B.; Fang, J., "Recent Advances in Engineered Biochar Productions and Applications". Crit Rev Env Sci Tec, 2017, 47 (22), 2158-2207.
  • [27]. Akman, E.; Akin, S.; Ozturk, T.; Gulveren, B.; Sonmezoglu, S., "Europium and Terbium Lanthanide Ions Co-Doping in TiO2 Photoanode to Synchronously Improve Light-Harvesting and Open-Circuit Voltage for High-Efficiency Dye-Sensitized Solar Cells". Sol Energy, 2020, 202, 227-237.
  • [28]. Qazi, U. Y.; Yuan, C. Z.; Ullah, N.; Jiang, Y. F.; Imran, M.; Zeb, A.; Zhao, S. J.; Javaid, R.; Xu, A. W., "One-Step Growth of Iron-Nickel Bimetallic Nanoparticles on FeNi Alloy Foils: Highly Efficient Advanced Electrodes for the Oxygen Evolution Reaction". Acs Appl Mater Inter, 2017, 9 (34), 28627-28634.
  • [29]. Yan, S. J.; Zhen, L.; Xu, C. Y.; Jiang, J. T.; Shao, W. Z., "Microwave Absorption Properties of FeNi3 Submicrometre Spheres and SiO2@FeNi3 Core-Shell Structures". J Phys D Appl Phys, 2010, 43 (24), 245003.
  • [30]. Wang, Y. D.; Duan, J. L.; Zhao, Y. Y.; Yang, X. Y.; Tang, Q. W., "Ternary Hybrid PtM@Polyaniline (M = Ni, FeNi) Counter Electrodes for Dye-Sensitized Solar Cells". Electrochim Acta, 2018, 291, 114-123.
  • [31]. Jeong, H.; Pak, Y.; Hwang, Y.; Song, H.; Lee, K. H.; Ko, H. C.; Jung, G. Y., "Enhancing the Charge Transfer of the Counter Electrode in Dye-Sensitized Solar Cells Using Periodically Aligned Platinum Nanocups". Small, 2012, 8 (24), 3757-3761.
  • [32]. Sarkar, A.; Chakraborty, A. K.; Bera, S., "NiS/rGO Nanohybrid: An Excellent Counter Electrode for Dye Sensitized Solar Cell". Sol Energ Mat Sol C, 2018, 182, 314-320.
  • [33]. Li, L.; Zhang, X.; Liu, S. A.; Liang, B. L.; Zhang, Y. C.; Zhang, W. M., "One-Step Hydrothermal Synthesis of NiCo2S4 Loaded on Electrospun Carbon Nanofibers as an Efficient Counter Electrode for Dye-Sensitized Solar Cells". Sol Energy, 2020, 202, 358-364.
  • [34]. Nemala, S. S.; Ravulapalli, S.; Kartikay, P.; Banavath, R.; Mallick, S.; Bhargava, P.; Bhushan, M.; Mohapatra, D., "Natural Solvent Facilitated High-Shear Exfoliated Graphene Nanoplatelets Enabled Economically-Efficient and Stable DSSC". Mater Lett, 2021, 287, 129263.
  • [35]. Gong, J. W.; Sumathy, K.; Qiao, Q. Q.; Zhou, Z. P., "Review on Dye-Sensitized Solar Cells (DSSCs): Advanced Techniques and Research Trends". Renew Sust Energ Rev, 2017, 68, 234-246.
El-Cezeri-Cover
  • ISSN: 2148-3736
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2013
  • Yayıncı: Tüm Bilim İnsanları ve Akademisyenler Derneği