Arı Poleni Bazlı Gümüş Nanopartiküllerin Sentezi, Karakterizasyonu ve Antidiyabetik Potansiyeli

Arı poleni içerdiği yağ, karhohidrat, lipit ve fenolik bileşenler sayesinde hem önemli bir besin kaynağı olmakta hem de apiterapi uygulamalarında yer almaktadır. Yapılan bu çalışma ile arı poleninin içerdiği bileşenlerin potansiyel indirgeme güçlerinden faydalanılarak çevre dostu, biyouyumlu arı poleni temelli gümüş nanopartiküller sentezlendi (BP- AgNPs). Elde edilen nanopartiküller spektroskopik ve mikroskobik teknikler kullanılarak karakterize edildi. Gümüş nanopartiküllerin 348 nm’ de maksimum absorbans verdiği tespit edildi. Partikül boyutlanırınn ortalama 40-60 nm arasında değiştiği görüldü. Elde edilen BP-AgNPs’ in α-amilaz ve α-glukozidaz enzimleri üzerine inhibisyon etkisi araştırıldı. IC50 değerleri α-amilaz ve α-glukozidaz enzimleri için sırasıyla 2.56 ± 0.10ve 2.13 ± 0.11 mg/mL olarak tespit edildi. Elde edilen BP- AgNPs’in Diabetes mellitus tedavisinde destekleyici olarak kullanılabileceği belirlendi.

Synthesis, Characterization and Antidiabetic Potential of Bee Pollen Based Silver Nanoparticles

Bee pollen is both an important food source and a part of apitherapy applications because of the components it contains such as fat, carbohydrate, lipid and phenolics. In this study, environmentally friendly, biocompatible bee pollen-based silver nanoparticles (BP-AgNPs) were synthesized by utilizing the potential reducing powers of the components contained in bee pollen. The resulting nanoparticles were characterized using spectroscopic and microscopic techniques. It was determined that silver nanoparticles gave maximum absorbance at 348 nm. It was observed that the particle sizes ranged between 40-60 nm on average. The inhibition effect of the obtained BP-AgNPs on α-amylase and α-glucosidase enzymes was investigated. IC50 values were determined as 2.56 ± 0.10 and 2.13 ± 0.11 mg/mL for α-amylase and α-glucosidase enzymes, respectively. It was determined that obtained BP-AgNPs could be used as a support in the treatment of Diabetes mellitus.

___

  • [1]. Beykaya, M., Çağlar, A. Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 2016, 16(3), 631-641.
  • [2]. Roco, M. C., National Nanotechnology InitiativePast, Present, Future. In: Handbook of Nanoscience, Engineering and Technology, Goddard III WA, Brenner DW, Lyshevski SE, Iafrate GJ. Taylor &Francis, USA, 2007, pp. 3.1-3.21
  • [3]. Rai, M.K., Yadav, A.P., Gade, A.K. Silver nanoparticles as a new generation of antimicrobials, Biotech Adv., 2009, 27 (1), 76-82.
  • [4]. Anonim, Food Safety Authority of Ireland, (2008). Relevance for food safety of applications of nanotechnology. In The Food And Feed Industry, 2008, http://www.fsai.ie/publications/reports/
  • [5]. Miller, G., Senjen, R., Out Of The Laboratory And On To Our Plates-Nanotechnology In Food And Agriculture, Friends Of The Earth Australia, Europe & USA., 2008, p.68.
  • [6]. Mohammadi, F., Yousefi, M., Ghahremanzadeh, R., Green Synthesis, Characterization and Antimicrobial Activity of Silver Nanoparticles (AgNps) Using Leaves and Stems Extract of Some Plants, Advanced Journal of Chemistry-Section A, 2019, 2 (4), 266–275
  • [7]. Ali, Z.A., Yahya, R., Sekaran, S.D., Puteh, R., Green synthesis of silver nanoparticles using apple extract and its antibacterial properties, Advances in Materials Science and Engineering, 2016, 1–6
  • [8]. S, Majeed., Mohd, S. A., Gouri K. D., Mohammed, T.A., Anima, N., Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line, Chinese Journal of Natural Medicines, 2016, 14 (8), 615–620
  • [9]. Mousavi, S.A., Almasi, A., Navazeshkh, F., Falahi, F., Biosorption of lead from aqueous solutions by algae biomass: Optimization and modeling, Desalination and Water Treatment, 2019, 148, 229–237
  • [10]. Gopalu, K., Matheswaran J., Alexander G., Juan, Antonio LT., Evgeny, K., D.K., Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications, The Journal of The Minerals, Metals & Materials Society, 2016, 69, 1206–1212.
  • [11]. Ramkumar, V.S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G.D., Dung, T.N.B., Kannapiran, E., Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties, Biotechnology Reports, 2017, 14, 1–7.
  • [12]. Ahmed, M.J., Murtaza, G., Rashid, F., Iqbal, J., Eco-friendly green synthesis of silver nanoparticles and their potential applications as antioxidant and anticancer agents, Drug Development and Industrial Pharmacy I, 2019, 45 1682–1694
  • [13]. Thombre, R., Chitnis, A., Kadam, V., Bogawat, Y., Colaco, R., Kale, A., A facile method for synthesis of biostabilized silver nanoparticles using Eichhornia crassipes (Mart.) Solms (water hyacinth), Indian Journal of Biotechnology, 2014, 337-341
  • [14]. Mohdaly, A.A., Mahmoud, A.A., Roby,M., Smetanska, I., Hassanien,M.F.R., Phenolic Extract from Propolis and Bee Pollen: Composition, Antioxidant and Antibacterial Activities, J. Food Biochem., 2015, 39, 538–547
  • [15]. Rzepecka-Stojko, A., Stojko, J., Kurek-Górecka, A., Górecki, M., Kabała-Dzik, A., Kubina, R., Mo´zdzierz, A., Buszman, E., Polyphenols from Bee Pollen: Structure, Absorption, Metabolism and Biological Activity, Molecules, 2015, 20, 21732–21749.
  • [16]. Pernal, S.F., Currie, R.W., The influence of pollen quality on foraging behavior in honeybees (Apis mellifera L.), Behavioral Ecology and Sociobiology, 2001, 51(1), 53-68.
  • [17]. Thorp, R.W., Structural, behavioral, and physiological adaptations of bees (Apoidea) for collecting pollen, Annals of the Missouri Botanical Garden, 1979, 788-812
  • [18]. Rzepecka-Stojko, A., Stojko, J., Kurek-Gorecka, A., Gorecki, M., Kabała-Dzik, A., Kubina, R., Buszman, E., Polyphenols from bee pollen: structure, absorption, metabolism and biological activity, Molecules, 2015, 20(12), 21732-21749.
  • [19]. Mayda, N., Keskin, M., Keskin, Ş., Özkök, A., Bilecik ilinden toplanan arı polenlerinin botanik orijinleri ile toplam fenolik ve flavonoid içeriklerinin belirlenmesi, Uludağ Arıcılık Dergisi, 2019, 19 (2) , 152-160
  • [20]. Baublis, A., Clydesdale, F., Decker, E., Antioxidants in wheat-based breakfast cereals, Cereal Foods World, 2000
  • [21]. Cook, N.C., Samman, S., Flavonoids— chemistry, metabolism, cardioprotective effects, and dietary sources, The Journal of nutritional biochemistry, 1996, 7(2): 66-76.
  • [22]. Campos, M.G.R., Frigerio, C., Lopes, J., Bogdanov, S., What is the future of Bee-Pollen, Journal of ApiProduct and ApiMedical Science, 2010, 2(4), 131-144.
  • [23]. Almeida-Muradian, L., Pamplona, L.C., Coimbra, S.l., Barth, O.M., Chemical composition and botanical evaluation of dried bee pollen pellets, Journal of Food Composition and Analysis, 2005, 18(1), 105-111.
  • [24]. Keskin, M., Özkök, A., α-Amylase Inhibition Properties of Bee Pollen and Bee Bread (Perga), Hacettepe Journal of Biology and Chemistry, 2020, 48(4), 389-393.
  • [25]. Al-Yousef, H. M., Amina, M., Alqahtani, A. S., Alqahtani, M. S., Malik, A., Hatshan, M. R.,…, Syed, R., Pollen Bee Aqueous Extract-Based Synthesis of Silver Nanoparticles and Evaluation of Their Anti-Cancer and Anti-Bacterial Activities, Processes, 2020, 8(5), 524
  • [26]. Singleton, VL., Orthofer, R., Lamuela-Raventos, RM., Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent, In Methods in enzymology, 1999, 299, 152-178
  • [27]. Singleton, V.L., Rossi, J.A., Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents, American journal of Enology and Viticulture, 1965, 16(3), 144-158.
  • [28]. Bernfeld, P., Amylases, alpha and beta, Methods in enzymology., 1955, 149-158
  • [29]. Gholamhoseinian, A., Fallah H, Sharifi-far, F., Mirtajaddini, M., The inhibitory effect of some Iranian plants extracts on the alpha glucosidase, Iranian Journal of Basic Medical Sci-ences, 2008, 11(1), 1-9.
  • [30]. Kumar, V., Gundampati, R.K., Singh, D.K., Bano, D., Jagannadham, M. V., Hasan, S.H., Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties, Journal of Photochemistry and Photobiology B: Biology, 2016, 162, 374–385
  • [31]. Alkhalaf, M. I., Hussein, R. H., Hamza, A., Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects, Saudi Journal of Biological Sciences, 2020, 27(9), 2410-2419.
  • [32]. Jini, D., Sharmila, S., Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity, Materials Today: Proceedings, 2020, 22, 432-438
  • [33]. Liem, L. N., Nguyen, D., Microwave assisted green synthesis of silver nanoparticles using Mulberry leaves extract and silver nitrate solution, Technologies, 2019, 7(1), 7.
  • [34]. Pechyen, C., A flower shape-green synthesis and characterization of silver nanoparticles ( AgNPs ), Integrative Medicine Research, 2020, 9 (5), 11003–11012
  • [35]. https://www.masterorganicchemistry.com/2016/11/23/quick_analysis_of_ir_spectra/
  • [36]. Remya, R.R., Rajasree, S.R.R., Aranganathan, L., Suman, T.Y., An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7, Biotechnology Reports, 2015, 8 110–115
  • [37]. Daudu, O.M., Bee pollen extracts as potential antioxidants and inhibitors of α-amylase and α-glucosidase enzymes in vitro assessment, J. Apicultural Sci., 2019, 63, 315-325
  • [38]. Mărgăoan, R., Stranț, M., Varadi, A., Topal, E., Yücel, B., Cornea-Cipcigan M.,... Vodnar, D. C., Bee collected pollen and bee bread: Bioactive constituents and health benefits, Antioxidants, 2019, 8, 568
  • [39]. Anbazhagan, P., Murugan, K., Jaganathan, A., Sujitha, V., Samidoss, C. M., Jayashanthani, S., ... & Benelli, G., Mosquitocidal, antimalarial and antidiabetic potential of Musa paradisiaca-synthesized silver nanoparticles: in vivo and in vitro approaches, Journal of Cluster Science, 2017, 28(1), 91-107.
  • [40]. Malapermal, V., Botha, I., Krishna, S. B. N., Mbatha, J. N., Enhancing antidiabetic and antimicrobial performance of Ocimum basilicum, and Ocimum sanctum (L.) using silver nanoparticles, Saudi Journal of Biological Sciences, 2017, 24(6), 1294-1305
  • [41]. Sengottaiyan, A., Aravinthan, A., Sudhakar, C., Selvam, K., Srinivasan, P., Govarthanan, M., ..., Selvankumar, T., Synthesis and characterization of Solanum nigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats, Journal of Nanostructure in Chemistry, 2016, 6(1), 41-48
  • [42]. Manam, D.V.K., Murugesan, S., Biogenic silver nanoparticles by Halymenia poryphyroides and its in vitro anti-diabetic efficacy, Journal of Chemical and Pharmaceutical Research, 2013, 5(12), 1001-1008.