Kanserde yeni bir hedef haline gelen çok yönlü Sox2 geni

Sox2 proteini, farklılaşmamış erken embriyo kök hücrelerinin ve çeşitli yetişkin kök hücrelerinin gelişimi ve devamlılığının düzenlenmesinde rol oynayan bir transkripsiyon faktörüdür. Sox2, diğer pluripotensi faktörleri gibi posttranskripsiyonel ve post-translasyonel değişimlere uğramakta, böylece DNA'ya bağlanma aktivitesi değişebilmektedir. Sox2, kanser hücrelerinin çoğalması, invazyon, göç ve metastazında, tümör hücre ve kök hücre statüsünün devamında, hücresel programlama, apoptoz ve kemodirenç gelişimi gibi pek çok kanser aşamasında yer almaktadır. Bazı farklı bulgulara karşın çoğunlukla Sox2'nin kanser hücrelerinde anti-apoptotik bir faktör olarak çalıştığı konusunda uzlaşma vardır. Bu derlemede, Sox2'nin kök hücre devamlılığı, farklılaşması ve sinyal iletimindeki rollerini, bunun yanında gen çoğalmasıyla onkojenik özelliği kazanmasını ve moleküler hedef olarak kullanılma potansiyelini de kapsayan çok yönlü özelliklerini kısaca tartışacağız.

Multifunctional Sox2 gene which turns out a new target in cancer

Sox2 protein is a transcription factor which is important for the maintenance and regulation of the permanence of undifferentiated embryonic and adult stem cells. Like the other pluripotency factors, Sox2 can be regulated by posttranscriptional and post-translational modifications which affect its binding ability to DNA. Sox2 involves in many cellular events in the initiation and progression of tumorigenesis such as proliferation of cancer cells, invasion, migration, metastasis, maintenance of stem like state of cancer stem cells, cellular programming, apoptosis and chemoresistance. Although there is a confliction, it is generally accepted Sox2 is an anti-apoptotic factor in cancer cells. In this review, we discuss the roles of Sox2 in the presence of cell stemness, differantiation and signal transduction. Also, we underline its multifunctionality with discussing Sox2 gaining oncogenic properties by amplification therefore having the potential to be used as a molecular target.

___

  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006;126(4):663-76.
  • Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 2000;227(2):239-55.
  • Schnitzler CE, Simmons DK, Pang K, Martindale MQ, Baxevanis AD. Expression of multiple Sox genes through embryonic development in the ctenophore Mnemiopsis leidyi is spatially restricted to zones of cell proliferation. Evodevo 2014;5(1):15.
  • Sebe-Pedros A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 2011;28(3):1241-54.
  • Stevanovic M, Zuffardi O, Collignon J, Lovell-Badge R, Goodfellow P. The cDNA sequence and chromosomal location of the human SOX2 gene. Mamm Genome 1994;5(10):640-2.
  • Grzybowska EA. Human intronless genes: functional groups, associated diseases, evolution, and mRNA processing in absence of splicing. Biochem Biophys Res Commun 2012;424(1):1-6.
  • Fantes J, Ragge NK, Lynch SA, et al. Mutations in SOX2 cause anophthalmia. Nat Genet 2003;33(4):461-3.
  • Amaral PP, Neyt C, Wilkins SJ, et al. Complex architecture and regulated expression of the Sox2ot locus during vertebrate development. RNA 2009;15(11):2013-27.
  • Shahryari A, Rafiee MR, Fouani Y, et al. Two novel splice variants of SOX2OT, SOX2OT-S1, and SOX2OT-S2 are coupregulated with SOX2 and Oct4 in esophageal squamous cell carcinoma. Stem Cells 2014;32(1):126-34.
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science 2001;291(5507):1304-51.
  • Markovic D, Challiss RA. Alternative splicing of G protein-coupled receptors: physiology and pathophysiology. Cell Mol Life Sci 2009;66(20):3337-52.
  • Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007;7(2):79-94.
  • Sinclair AH, Berta P, Palmer MS, et al. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 1990;346(6281):240-4.
  • Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 2002;3(2):167-70.
  • Kamachi Y, Uchikawa M, Kondoh H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet 2000;16(4):182-7.
  • Xu N, Papagiannakopoulos T, Pan G, Thomson JA, Kosik KS. MicroRNA-145 regulates Oct4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009;137(4):647-58.
  • Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS One 2011;6(1):e16617.
  • Jeon HM, Sohn YW, Oh SY, et al. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*- mediated suppression of SOX2. Cancer Res 2011;71(9):3410-21.
  • Tsuruzoe S, Ishihara K, Uchimura Y, et al. Inhibition of DNA binding of Sox2 by the SUMO conjugation. Biochem Biophys Res Commun 2006;351(4):920-6.
  • Baltus GA, Kowalski MP, Zhai H, et al. Acetylation of sox2 induces its nuclear export in embryonic stem cells. Stem Cells 2009;27(9):2175-84.
  • Jeong CH, Cho YY, Kim MO, et al. Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells 2010;28(12):2141-50.
  • Ouyang J, Yu W, Liu J, et al. Cyclin-Dependent Kinase-Mediated Sox2 Phosphorylation Enhances the Ability of Sox2 to Establish the Pluripotent State. J Biol Chem 2015;290(37):22782-94.
  • Fang L, Zhang L, Wei W, et al. A methylation-phosphorylation switch determines Sox2 stability and function in ESC maintenance or differentiation. Mol Cell 2014; 55(4): 537-51.
  • Zhao HY, Zhang YJ, Dai H, Zhang Y, Shen YF. CARM1 mediates modulation of Sox2. PLoS One 2011;6(10):e27026.
  • Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005;122(6): 947- 56.
  • Niwa H. How is pluripotency determined and maintained? Development 2007;134(4):635-46.
  • Yuan H, Corbi N, Basilico C, Dailey L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 1995;9(21):2635-45.
  • Nakatake Y, Fukui N, Iwamatsu Y, et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol 2006;26(20):7772-82.
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007;131(5):861-72.
  • Li H, Collado M, Villasante A, et al. p27(Kip1) directly represses Sox2 during embryonic stem cell differentiation. Cell Stem Cell 2012;11(6):845-52.
  • Bylund M, Andersson E, Novitch BG, Muhr J. Vertebrate neurogenesis is counteracted by Sox1-3 activity. Nat Neurosci 2003;6(11):1162-8.
  • Okubo T, Pevny LH, Hogan BL. Sox2 is required for development of taste bud sensory cells. Genes Dev 2006;20(19):2654-9.
  • Ragge NK, Lorenz B, Schneider A, et al. SOX2 anophthalmia syndrome. Am J Med Genet A 2005;135(1):1-7.
  • Kelberman D, Rizzoti K, Avilion A, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo- pituitary-gonadal axis in mice and humans. J Clin Invest 2006;116(9):2442-55.
  • Williamson KA, Hever AM, Rainger J, et al. Mutations in SOX2 cause anophthalmia-esophageal-genital (AEG) syndrome. Human Molecular Genetics 2006;15(9):1413-22.
  • Gen Y, Yasui K, Nishikawa T, Yoshikawa T. SOX2 promotes tumor growth of esophageal squamous cell carcinoma through the AKT/mammalian target of rapamycin complex 1 signaling pathway. Cancer Sci 2013;104(7):810-6.
  • Sun C, Sun L, Li Y, Kang X, Zhang S, Liu Y. Sox2 expression predicts poor survival of hepatocellular carcinoma patients and it promotes liver cancer cell invasion by activating Slug. Med Oncol 2013;30(2):503.
  • Chen S, Li X, Lu D, et al. SOX2 regulates apoptosis through MAP4K4-survivin signaling pathway in human lung cancer cells. Carcinogenesis 2014;35(3):613-23.
  • Li X, Xu Y, Chen Y, et al. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal network. Cancer Lett 2013;336(2):379-89.
  • Matsuoka J, Yashiro M, Sakurai K, et al. Role of the stemness factors sox2, oct3/4, and nanog in gastric carcinoma. J Surg Res 2012;174(1):130-5.
  • Gonzalez-Marquez R, Llorente JL, Rodrigo JP, et al. SOX2 expression in hypopharyngeal, laryngeal, and sinonasal squamous cell carcinoma. Hum Pathol 2014;45(4):851-7.
  • Hussenet T, Dali S, Exinger J, et al. SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas. PLoS One 2010;5(1):e8960.
  • Annovazzi L, Mellai M, Caldera V, Valente G, Schiffer D. SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics Proteomics 2011;8(3):139-47.
  • Hussenet T, du Manoir S. SOX2 in squamous cell carcinoma: amplifying a pleiotropic oncogene along carcinogenesis. Cell Cycle 2010;9(8):1480-6.
  • Maier S, Wilbertz T, Braun M, et al. SOX2 amplification is a common event in squamous cell carcinomas of different organ sites. Hum Pathol 2011;42(8):1078-88.
  • Mao DD, Gujar AD, Mahlokozera T, et al. A CDC20-APC/SOX2 Signaling axis regulates human glioblastoma stem-like cells. Cell Rep 2015;11(11):1809-21.
  • Boumahdi S, Driessens G, Lapouge G, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 2014;511(7508):246-50.
  • Gangemi RM, Griffero F, Marubbi D, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009;27(1):40-8.
  • Basu-Roy U, Seo E, Ramanathapuram L, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas. Oncogene 2012;31(18):2270-82.
  • Bayo P, Jou A, Stenzinger A, et al. Loss of SOX2 expression induces cell motility via vimentin up-regulation and is an unfavorable risk factor for survival of head and neck squamous cell carcinoma. Mol Oncol 2015;9(8):1704-19.
  • Li W, Li B, Wang R, Huang D, Jin W, Yang S. SOX2 as prognostic factor in head and neck cancer: a systematic review and meta-analysis. Acta Otolaryngol 2014;134(11):1101-8.
  • Herreros-Villanueva M, Zhang JS, Koenig A, et al. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells. Oncogenesis 2013;2:e61.
  • Kim J, Chu J, Shen X, Wang J, Orkin SH. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 2008;132(6):1049-61.
  • Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development 2009;136(11):1899-907.
  • Tompkins DH, Besnard V, Lange AW, et al. Sox2 is required for maintenance and differentiation of bronchiolar Clara, ciliated, and goblet cells. PLoS One 2009;4(12):e8248.
  • Singh S, Trevino J, Bora-Singhal N, et al. EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer 2012;25(11):73.
  • Lu Y, Futtner C, Rock JR, et al. Evidence that SOX2 overexpression is oncogenic in the lung. PLoS One 2010;5(6):e11022.
  • Bass AJ, Watanabe H, Mermel CH, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 2009;41(11):1238-42.
  • Xiang R, Liao D, Cheng T, et al. Downregulation of transcription factor SOX2 in cancer stem cells suppresses growth and metastasis of lung cancer. Br J Cancer 2011;104(9):1410-7.
  • Rudin CM, Durinck S, Stawiski EW, et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 2012;44(10):1111-6.
  • Toschi L, Finocchiaro G, Nguyen TT, et al. Increased SOX2 gene copy number is associated with FGFR1 and PIK3CA gene gain in non-small cell lung cancer and predicts improved survival in early stage disease. PLoS One 2014;9(4):e95303.
  • Fang WT, Fan CC, Li SM, et al. Downregulation of a putative tumor suppressor BMP4 by SOX2 promotes growth of lung squamous cell carcinoma. Int J Cancer 2014;135(4):809-19.
  • Tomasetti C, Levy D. Role of symmetric and asymmetric division of stem cells in developing drug resistance. Proc Natl Acad Sci USA 2010;107(39):16766-71.
  • Saini V, Shoemaker RH. Potential for therapeutic targeting of tumor stem cells. Cancer Sci 2010;101(1):16-21.
  • Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature 2012;481(7381):287-94.
  • Simoes BM, Piva M, Iriondo O, et al. Effects of estrogen on the proportion of stem cells in the breast. Breast Cancer Res Treat 2011;129(1):23-35.
  • Piva M, Domenici G, Iriondo O, et al. Sox2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med 2014;6(1):66- 79.
  • Jia X, Li X, Xu Y, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol 2011;3(4):230-8.
  • Dogan I, Kawabata S, Bergbower E, et al. SOX2 expression is an early event in a murine model of EGFR mutant lung cancer and promotes proliferation of a subset of EGFR mutant lung adenocarcinoma cell lines. Lung Cancer 2014;85(1):1-6.
  • Hutz K, Mejias-Luque R, Farsakova K, et al. The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells. Carcinogenesis 2014;35(4):942-50.
  • Tian T, Zhang Y, Wang S, Zhou J, Xu S. Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer. J Biomed Res 2012;26(5):336-45.
Ege Tıp Dergisi-Cover
  • ISSN: 1016-9113
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1962
  • Yayıncı: Ersin HACIOĞLU
Sayıdaki Diğer Makaleler

Bornova ilçesinde yaşayan 65 yaş üzeri nüfustaki fonksiyonel bağımlılık oranları

SEVNAZ ŞAHİN, Fehmi AKÇİÇEK, HAYAL BOYACIOĞLU, Pınar TOSUN TAŞAR, Elif KOZAN, Ozan Fatih SARIKAYA

Pseudomonas aeruginosa as a cause of septic arthritis after a sewing needle injury

Yakup EKİNCİ, Kaan GÜRBÜZ, ALPER ÇIRAKLI, Duygu EKİNCİ, Sevgi ÇIRAKLI

Bir üniversite hastanesinin doğum polikliniğine başvuran gebelerde gestasyonel diabetes mellitus prevalansı

Gülşah BALIK, Figen Kır ŞAHİN, Serap Baydur ŞAHİN, Yeşim Bayoğlu TEKİN, ŞENOL ŞENTÜRK, Mehmet KAĞITCI

Effect of body temperature on residual neuromuscular blockade of intermediate- acting neuromuscular blocking agents

Sermin KARAARSLAN, Mustafa GÖNÜLLÜ, Zeki Tuncel TEKGÜL, Ergin ALAYGUT, Yücel KARAMAN

Duodenocolic fistula Duodenokolik fistül

YELİZ ÇAĞAN APPAK, ÖMER YILMAZ, Gökhan PEKİNDİL, SEMİN AYHAN, HASAN ERHUN KASIRGA

Akut apandisiti taklit eden primer omentum torsiyonu

Sevgi Büyükbeşe SARSU, Kamil ŞAHİN, Wassim ALMAHLI

Knowledge and attitudes of women about Cesarean section living in Bonab, Iran İran Bonab'da yaşayan kadınların sezaryen konusundaki görüş ve eğilimleri

Minoo RANJBAR, Azad RAHMANİ, Mojgan MİRGAFOURVAND, Mahin Yazdani ZONOUZ

Erişkinde kalın filum terminale nedeniyle gelişen akut gergin omurilik sendromu

Ayçe ATALAY, Sıla ULUS, Zeynep GÜVEN

The prevalence and distribution of congenital heart disease in neonates with Down syndrome in Southeastern Anatolian Region of Turkey

Bedri ALDUDAK, MUHİTTİN ÇELİK, Melek AKAR, Osman AKDENİZ, Sertaç Hanedan ONAN

Komplike Fournier gangreninde multidisipliner yaklaşım

Burhan MAYIR, Uğur DOĞAN, Asım USLU, Umut Rıza GÜNDÜZ, Yeliz Akpınar MAYİR, Tuğrul ÇAKIR, Arif ASLANER, Senem AKPINAR