İnsan motor nöronlarında sinaptik gürültünün ve postsinaptik potansiyellerin hesaplanması

Bu çalışmanın amacı, insan motor nöronları üzerinde oluşan sinaptik gürültüyü (SG) ve eksite edici postsinaptik potansiyel (EPSP) genliğini peristimulus time histogram (PSTH) ve peristimulus frekansgram (PSF) yöntemlerini kullanarak, membran potansiyeli trajektörü (yolu) yöntemi üzerinden hesaplamaktır. Gereç ve Yöntem: Araştırmaya herhangi bir nörolojik rahatsızlığı olmayan dokuz kadın ve beş erkek gönüllü katıldı. Denekler yüzükoyun olarak bir fizyoterapi masasına yatırıldı. Elektriksel uyarılar sağ bacak popliteal fossa (fossa poplitea / popliteal çukur / diz ardı çukuru) üzerinden tibial sinire 1–2 saniye aralıklarla rastgele olarak verildi. Kayıtlar soleus kasından, yüzeysel elektromiyogram (SEMG) ve tek motor ünite aksiyon potansiyelleri (SMUP) şeklinde kaydedildi. Bulgular: On dört denekten toplam olarak 42 tek motor ünite (SMU) elde edildi. Elde edilen bu motor üniteler, ortalaması alınmış SEMG’deki genlik büyüklüklerine göre, sadece H-refleksi, büyük genlikli H ile birlikte küçük genlikli m (m+H) ve büyük genlikli M ile birlikte küçük genlikli h (M+h) olacak şekilde üç gruba ayrıldı. Sonuçlar incelendiğinde PSTH-EPSP genliği ile PSF-EPSP2 genliği değerleri arasında istatistiksel olarak anlamlı bir farkın bulunmadığı görüldü (p>0,017). Her iki yöntemde hesaplanan EPSP genlikleri yaklaşık olarak 2 mV civarında bulundu. Sadece PSF yöntemi ile hesaplanan insan motor nöronlarındaki toplam sinaptik gürültü (TSG) değeri ise 5,2 mV olarak tespit edildi. Sonuç: PSF yöntemi EPSP genliğinin hesaplanmasında PSTH yöntemi kadar güvenilir bir yöntemdir. Dahası bu yöntem, insan motor nöronlarındaki SG genliğinin hesaplanması için güvenle kullanılabilir bir yöntem olup, bu anlamda PSTH yönteminden daha başarılıdır.

Estimation of synaptic noise and postsynaptic potentials on human motoneurones

Aim: The objective of this experiment is to estimate amount of synaptic noise (SN) and excitatory post-synaptic potential (EPSP) on human motoneurones using peristimulus time histogram (PSTH), peristimulus frequencygram (PSF) and membrane potential trajectory methods. Material and Methods: Nine female and 5 male healthy subjects who did not have any neurological disorders were tested. The subjects layed prone on a physiotherapy table. Electrical stimuli were delivered to the tibial nerve in popliteal fossa randomly every 1 to 2 s. The data were recorded using both surface electromyogram (SEMG) and single motor unit potentials (SMUP) in soleus muscle. Results: A total of 42 soleus motor units were analysed. The average SEMG recordings showed three conditions: H- reflex only (H-only), high amplitude H-reflex with low amplitude M-response (m+H), and low amplitude H-reflex with high amplitude M-response (M+h). Thus, the data were analysed according to the three groups. Our results demonstrated that there were no statistically significant differences between PSTH-EPSP and PSF-EPSP2 amplitudes in all groups (p>0,017). Furthermore, the EPSP amplitudes calculated by both methods were found to be about 2 mV. The total synaptic noise (TSN) on the human motoneurones was estimated using only PSF method and was found to be 5,2 mV. Conclusion: We concluded that both methods can be used with confidence to estimate the EPSP amplitude and SN amplitude can be estimated only by the PSF method on the human motoneurones.

___

  • 1. Powers RK, Türker KS. Estimates of EPSP amplitude based on changes in motoneuron discharge rate and probability. Experimental Brain Research 2010; 206(4): 427-440.
  • 2. Awiszus F, Feistner H, Schafer SS. On a method to detect long-latency excitations and inhibitions of single hand muscle motoneurons in man. Exp Brain Res 1991; 86(2): 440-446.
  • 3. Ashby P, Zilm D. Relationship between EPSP shape and cross-correlation profile explored by computer simulation for studies on human motoneurons. Exp Brain Res 1982; 47(1): 33-40.
  • 4. Türker KS, Cheng HB. Motor-unit firing frequency can be used for the estimation of synaptic potentials in human motoneurons. J Neurosci Methods 1994; 53(2): 225-234.
  • 5. Türker KS, Powers RK. Estimation of postsynaptic potentials in rat hypoglossal motoneurones: Insights for human work. J Physiol 2003; 551(Pt 2): 419-431.
  • 6. Türker KS, Powers RK. Black box revisited: A technique for estimating postsynaptic potentials in neurons. Trends Neurosci 2005; 28(7): 379-386.
  • 7. Türker KS. The shape of the membrane potential trajectory in tonically-active human motoneurons. J Electromyogr Kines 1995; 5(1): 3-14.
  • 8. Türker KS, Miles TS. Threshold depolarization measurements in resting human motoneurones. J Neurosci Methods 1991; 39(1): 103-107.
  • 9. Miles TS. Estimating post-synaptic potentials in tonically discharging human motoneurons. J Neurosci Methods 1997; 74(2): 167-174.
  • 10. Miles TS, Türker KS, Le TH. La reflexes and EPSPs in human soleus motor neurones. Exp Brain Res 1989; 77(3): 628-636.
  • 11. Warren JD, Miles TS, Turker KS. Properties of synaptic noise in tonically active human motoneurons. J Electromyogr Kines 1993; 2(4): 189-202.
  • 12. Schwindt PC, Calvin WH. Membrane-potential trajectories between spikes underlying motoneuron firing rates. J Neurophysiol 1972; 35(3): 311-325.
  • 13. Calvin WH. Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res 1974; 69(2): 341-346.
  • 14. Fetz EE, Gustafsson B. Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. J Physiol (Lond) 1983; 341: 387-410.
  • 15. Türker KS, Cheng HB. Motor-unit firing frequency can be used for the estimation of synaptic potentials in human motoneurones. J Neurosci Methods 1994; 53(2): 225-234.
  • 16. Prasartwuth O, Binboğa E, Türker KS. A study of synaptic connection between low threshold afferent fibres in common peroneal nerve and motoneurones in human tibialis anterior. Exp Brain Res 2008; 191(4): 465-472.
  • 17. Kahya MC, Yavuz SU, Turker KS. Cutaneous silent period in human FDI motor units. Experimental Brain Research 2010; 205(4): 455-463.
  • 18. Türker KS, Powers RK. Effects of large excitatory and inhibitory inputs on motoneuron discharge rate and probability. J Neurophysiol 1999; 82: 829-840.
  • 19. Ellaway PH. Cumulative sum technique and its application to the analysis of peristimulus time histograms. Electroencephalogr Clin Neurophysiol 1978; 45: 302-303.
  • 20. Schwindt PC, Crill WE. Factors influencing moto-neuron rhythmic firing - results from a voltage-clamp study. J Neurophysiol 1982; 48(4): 875-890.
  • 21. Matthews PBC. Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. J Physiol (Lond) 1996; 492 (Pt 2): 597-628.
  • 22. Powers RK, Türker KS. Deciphering the contribution of intrinsic and synaptic currents to the effects of transient synaptic inputs on human motor unit discharge. Clin Neurophysiol 2010. 121 (10): 1643-1654.
  • 23. Burne JA, Lippold OC. Reflex inhibition following electrical stimulation over muscle tendons in man. Brain 1996; 119 (pt 4): 1107-1114.
Ege Tıp Dergisi-Cover
  • ISSN: 1016-9113
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1962
  • Yayıncı: Ersin HACIOĞLU