Farklı implant materyalleri üzerinde osteoblasta farklılaştırılmış kemik iliği stromal kök hücrelerinin (KİSKH) kemik tamirindeki rolü

Amaç: Doku mühendisliği yardımı ile materyaller üzerinde kemik iliği stromal kök hücrelerinin etkileşmesinin yeni kemik oluşumuna katkı sağlayacağı düşünülmektedir. Bu çalışmada, farklı dolgu materyalleri üzerinde, medyum ile osteoblasta farklılaştırılan kemik iliği stromal kök hücrelerinin, in vivo ortamda kemik yara modeline implantasyonları sonucunda yara iyileşmesindeki etkilerinin incelenmesi amaçlanmıştır. Gereç ve Yöntem: Erişkin erkek sıçan tibiasından elde edilen kemik iliği hücreleri, α-MEM, %10 fetal bovine serum, penisilin, streptomisin ve gentamisin içeren kontrol besi ortamında (KBO) üç farklı dolgu materyalleri olan Cellulose Tip I (BM1), Cellulose Tip II (BM2) ve Gelatine (BM3) üzerinde kültüre edildi. Yüzeye tutunmayan hücreler besi ortamının alınmasıyla uzaklaştırıldı ve materyal yüzeyine tutunmuş olan hücreler deksametazone, β-gliserofosfat ve askorbik asit içeren osteoblastik besi ortamı (OBO) ile inkübe edildi. Farklılaşan hücreler, osteonektin (ON) ve osteokalsin (OK) markırları ile osteoblasta dönme yetenekleri, vonkossa (VK) ve alkalen fosfataz (ALP) aktiviteleri ile kemikleşme ve mineralizasyon kapasiteleri saptandı. Tamirdeki etkinlikleri histolojik ve morfometrik yöntemle araştırıldı. Bulgular: Değişik materyaller üzerinde farklılaşan hücrelerin adhesyon, çoğalma ve farklılaşma kapasitelerinin arttığı ve biyomateryallerin üzerlerindeki hücreler ile implantasyonları sonrasında deneysel yara bölgesinde daha iyi tedavi yaptıkları bulundu. Sonuç: Kullanılan materyaller ile hücreler arasındaki olumlu etkileşmenin anlaşılması, gelecekte hastaların yaşam kalitesinde bir umut olacak olan doku mühendisliğinin klinik tedavideki önemi için büyük yarar sağlayacaktır.

The bone repair role of bone marrow stromal cells (BMSC) differentiated to osteoblast on the different implant materials

Introduction: It has been thought that tissue engineering could be helpful in the wound healing of the bone by the bone marrow stromal cells (BMSC) on the biomaterials. In this study, the effect of differentiated BMSC on the different biomaterials for in vivo wound healing of experimental bone defect by the implantation will be investigated. Materials and Methods: Bone marrow stromal cells from mature male rat tibia were cultured on the three different (Cellulose Type I, Cellulose type II, Gelatine) biomaterials with culture medium including α-MEM, 10% foetal bovine serum, penicillin, streptomycin, amphotericin and gentamycine. Nonadhesive cells were removed by medium change and attach cells in the culture were incubated by osteoblastic medium including ascorbic acid, dexamethasone and β-glycerophosphate. The differentiated cells were determined by osteoblastic markers such as osteonectin and osteocalcin and were analyzed by vonkossa and alkalen phosphates for their mineralization and bone formation capacity. Their healing capacity was investigated by the histologic and morphometric methods. Results: The capacity of adhesion, proliferation and differentiation of bone marrow stromal cells was positively enhanced by these biomaterials and implantation of these biomaterials with differentiated cells produced better healing on the experimental bone defect. Conclusion: Understanding of the positive interactions between used biomaterials and cells will be helpful for the importance of tissue engineering on the clinical treatment which will promise a better quality of life for patients in the future.

___

  • 1) Justesen J, Stenderup K, Kassem MS. Mesenchymal stem cells. Potential use in cell and gene therapy of bone loss caused by aging and osteoporosis. Ugeskr Laeger 2001;163:5491-5.
  • 2) Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 2006;27(7):1071-80.
  • 3) Gao J, Dennis JE, Solchaga LA, Goldberg V M, Caplan AI. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng 2001;4:363-71.
  • 4) Zein DW, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architecture for tissue engineering applications. Biomaterials 2002;4:1169-85.
  • 5) Connolly JF. Injectable bone marrow preparations to stimulate osteogenic repair. Clin Orthop 1995;313:8-18.
  • 6) Gebhart M, Lane JA. Radiographical and biomechanical study of demineralized bone matrix implanted into a bone defect of rat femurs with and without bone marrow. Acta Orthop Belg 1991;57:130-43.
  • 7) Gerszten PC, Moossy JJ, Flickinger JC, Gerszten K, Kalend A, Martinez AJ. Inhibition of peridural fibrosis after laminectomy using low-dose external beam radiation in a dog model. Neurosurgery 2000;46:1478-85.
  • 8) Ekholm E, Hankenson KD, Uusitalo H, et al. Diminished callus size and cartilage synthesis in 1ß1 integrin-deficient mice during bone fracture healing. Am J Pathol 2002;160:1779-85.
  • 9) Lane JM, Tomin E, Bostrom MP. Biosynthetic bone grafting. Clin Orthop 1999;367:S107-17.
  • 10) Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: Limitations and recent advances. Ann Biomed Eng 2004;32:160-5.
  • 11) Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, Quarto R. Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp 2003;249:133-43.
  • 12) Dolder J, Farber E, Spauwen PH, Jansen JA. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials 2003;24:1745-50.
  • 13) Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;24:2529-43.
  • 14) Krebsbach PH, Mankani MH, Satomura K, Kuznetsov SA, Robey PG. Repair of craniotomy defects using bone marrow stromal cells. Transplantation 1998;66:1272-8.
  • 15) Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000;49:328-37.
  • 16) Schaefer D, Martin I, Jundt G, et al. Tissue engineered composites for the repair of large osteochondral defects. Arthritis Rheum 2002;9:2524-34.
  • 17) Vehof JWM, Haus MTU, Ruijter JE, Spauwen PHM, Jansen JA. Bone formation in transforming growth factor beta-1-loaded titanium fiber mesh implants. Clin Oral Implants Res 2002;13:94-102.
  • 18) Yuehuei HA, Friedman RJ. Animal models of bone defect repair. Anim Models Orthop Res 1999:13:241-60.
  • 19) van den Dolder J, Vehof PHM, Spauwen PH, Jansen JA. Bone formation by rat bone marrow cells cultured on titanium fiber mesh: Effect of in vitro culture time. J Biomed Mater Res 2002;62:350-8.
  • 20) Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 1998;80:985-96.
  • 21) Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 2000;49:328-37.
  • 22) Arinzeh TL, Peter SJ, Archambault MP, et al. Allogeneic mesenchymal stem cells regenerate bone in a criticalsized canine segmental defect. J Bone Joint Surg Am 2003;85:1927-35.
  • 23) Haasper C, Breitbart A, Hankemeier S, et al. Influence of fibrin glue on proliferation and differentiation of human bone marrow stromal cells seeded on a biologic3-dimensional matrix. Technol Health Care 2008;16:93-101.
  • 24) Schaeren S, Jaquiéry C, Wolf F, et al. Effect of bone sialoprotein coating of ceramic and synthetic polymer materials on in vitro osteogenic cell differentiation and in vivo bone formation. J Biomed Mater Res A 2010;92:1461-7.
  • 25) Tang Y, Tang W, Lin Y, et al. Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats. Cell Biol Int 2008;32:1150-7.
  • 26) van den Dolder J, Farber E, Spauwen PH, Jansen JA. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials 2003;24:1745-50.
  • 27) Cancedda R, Mastrogiacomo M, Bianchi G, Derubeis A, Muraglia A, Quarto R. Bone marrow stromal cells and their use in regenerating bone. Novartis Found Symp 2003;249:133-43.
  • 28) Kim SH, Kim KH, Seo BM, et al. Alveolar bone regeneration by transplantation of periodontal ligament stem cells and bone marrow stem cells in a canine peri-implant defect model: A pilot study. J Periodontol 2009;80:1815-23.
  • 29) Wang C, Wang Z, Li A, et al. Repair of segmental bone-defect of goat's tibia using a dynamic perfusion culture tissue engineering bone. J Biomed Mater Res A 2010;92:1145-53.
Ege Tıp Dergisi-Cover
  • ISSN: 1016-9113
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1962
  • Yayıncı: Ersin HACIOĞLU