ΔF508, ΔI507 ve F508C kistik fibroz mutasyonlarının gerçek-zamanlı multipleks PCR ile hızlı analizleri

Amaç: Kistik fibroz genellikle çocukluk yaşlarında ortaya çıkan ve tüm ekzokrin bezlerin fonksiyon bozukluğu ile seyreden kalıtsal bir hastalıktır. Avrupa' da yaygın olarak görülen bu hastalık kişilerin yaşam kalitesini etkilemekte ve tekrarlayan ağır solunum yolu enfeksiyonlarının açtıkları komplikasyonlar nedeniyle, erken yaşta ölüme yol açmaktadır. Kistik fibroz' daki en yaygın mutasyon ΔF508' dir. Bununla birlikte, binden fazla kistik fibroz gen (CFTR) mutasyonu tanımlanmıştır; ΔI507 ve F508C gibi. F508C ve ΔF508 mutasyonları ayrıca konjenital vas deferens agenezin gelişiminde de rol oynarlar. Çalışmadaki amacımız, aynı CFTR gen bölgesine düşen bu üç mutasyonu gerçek-zamanlı multipleks PCR yöntemi ile hızlı analizlerini gerçekleştirmekti. Gereç ve Yöntem: Ege Bölgesinde yaşayan kistik fibrozlu veya konjenital unilateral vas deferens agenezisi bulunan toplam 116 olgunun DNA örnekleri, tek bir çalışmada üç CFTR mutasyonun ayırıcı tanılarına gidilecek şekilde tasarlanmış olan gerçek zamanlı bir multipleks PCR yöntemiyle çalışıldı. Kullanılan yöntem ayrıca jel elekroforezi ve dHPLC yöntemleriyle de karşılaştırıldı. Bulgular: Çalışmanın sonunda, ΔI507 ve F508C mutasyonları için taşıyıcı olgu saptanmamasına karşılık, olguların % 6.0' sı ΔF508 aleli için heterozigot taşıyıcı ve % 1.8' i de homozigot hasta bulundu. ΔF508 mutasyonunun görülme sıklığı % 4.7 olarak belirlendi. Gerçek-zamanlı multipleks PCR yönteminin jel elektroforezi ve dHPLC' den daha hızlı sonuç verdiği görüldü. Sonuç: Kistik fibrozlu veya konjenital unilateral agenezisi bulunan olgularda CFTR ΔF508, ΔI507 ve F508C gen mutasyonlarının hızlı tayininde gerçek-zamanlı multipleks PCR ilk tercih edilen yöntem olmalıdır.

Rapid analysis of the cystic fibrosis ΔF508, ΔI507 and ΔF508C mutations by real-time multiplex PCR

Purpose: Cystic fibrosis, usually seen in childhood, is a hereditary disease that proceeds with the dysfunction of all exocrine glands. The disease is widely spread in Europe, affects the life quality of the affected individuals and causes their early death because of complications resulting from repeatedly serious respiratory tract infections. The most common mutation in cystic fibrosis is ΔF508. But so far, more than a thousand of other mutations have been discovered in the cystic fibrosis gene (CFTR); like ΔI507 and F508C. F508C and ΔF508 mutations are also implicated in the development of congenital vas deferens aplasia. The aim of this study was the rapid analyses of these three mutations that reside in the same CFTR gene region with a real-time multiplex PCR method. Methods: A total of 116 DNA samples of cases coming from the Aegean Region with cystic fibrosis or unilateral vas deferens aplasia were analyzed by a specifically designed real-time multiplex PCR method that detects all three CFTR mutations in one-step. The applied method was also compared with gel electrophoresis and dHPLC methods. Results: Although, we could not detect any carrier for the ΔI507 and F508C mutations at the end of our study; 6.0 % of the cases were heterozygous carriers for the ΔF508 allele and 1.8 % homozygous ill. The frequency of the ΔF508 mutation was defined as 4.7 %. The applied PCR method was also found to be faster in obtaining results compared to gel electrophoresis and dHPLC. Conclusion: The employed real-time multiplex PCR method should be the preferential method for the rapid analysis of the CFTR ΔF508, ΔI507 and F508C gene mutations in cases with cystic fibrosis or congenital unilateral vas deferens aplasia.

___

  • 1) Anderson DH. Cystic fibrosis of the pancreas. J Chronic Dis. 1958; 7(1):58-90.
  • 2) Tuğ E, Tuğ T. Kistik Fibrozis ve Moleküler-Genetik Yaklaşımlar. Toraks Dergisi. 2003; 4(2):198-204.
  • 3) Danes BS, Bearn AG. Localisation of the cystic-fibrosis gene. Lancet 1968; 2(7581):1303.
  • 4) Dallaire L, Destine ML. Localisation of the cystic-fibrosis gene. Lancet 1969; 1(7591):419-20.
  • 5) Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 1989; 245(4922):1066-1073.
  • 6) Kerem B, Rommens JM, Buchanan JA, Markiewics D, Cox TK, Chakravarti A, Buchwald M, Tsui LC. Identification of the cystic fibrosis gene: genetic analysis. Science 1989; 245(4922):1073-1080.
  • 7) Estivill X, Chillon M, Casals T, Bosch A, Morral N, Nunes V, Gasparini P, Seia A, Pignatti PF, Novelli G, et al. Delta F508 gene deletion in cystic fibrosis in southern Europe. Lancet 1989; 2(8676):1404.
  • 8) The Cystic Fibrosis Genetic Analysis Consortium. Population variation of common cystic fibrosis mutations. The Cystic Fibrosis Genetic Analysis Consortium. Hum Mutat 1994; 4:167-177.
  • 9) Kalin N, Claass A, Sommer M, Puchelle E, Tummler B. DeltaF508 CFTR expression in tissues from patients with cystic fibrosis. J Clin Invest 1999; 103:1379-1389.
  • 10) Welsh MJ, Smith AE. Molecular mechanism of CFTR chloride channel dysfunction in cystic fibrosis. Cell 1993; 73:1251-1254.
  • 11) Schwarz M, Summers C, Heptinstall L, Newton C, Markham A, Super M. A deletion mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) locus: Delta I507. Adv Exp Med Biol. 1991; 290:393-398.
  • 12) Kobayashi K, Knowles MR, Boucher RC, O'Brian WE, Beaudet AL. Benign missense variations in the cystic fibrosis gene. Am J Hum Genet. 1990; 47(4):611-615.
  • 13) Zielenski J. Genotype and Phenotype in Cystic Fibrosis. Respiration 2000; 67:117-133.
  • 14) al-Jader LN, Meredith AL, Ryley HC, Cheadle JP, Maguire S, Owen G, Goodchild MC, Harper PS. Severity of chest disease in cystic fibrosis patients in relation to their genotypes. J Med Genet. 1992; 29(12):883-887.
  • 15) Meschede D, Eigel A, Horst J, Nieschlag E. Compound heterozygosity for the delta F508 and F508C cystic fibrosis transmembrane conductance regulator (CFTR) mutations in a patient with congenital bilateral aplasia of the vas deferens. Am J Hum Genet. 1993; 53(1):292-293.
  • 16) Koprubasi FF, Malik N, Bosch-al Jadooa N, Alkan M, Buhler E. Molecular genetic analysis of Turkish cystic fibrosis patients. Ann Genet. 1993; 36(3):144-149.
  • 17) Onay T, Topaloğlu Ö, Gökgöz N, Kayserili H, Başaran S, Çokuğraş H, Söylemez Y, Akçakaya N, Apak M, Kırdar B. DNA analysis of cystic fibrosis in Turkish population. 12th National Congress of Biochemistry, Abstract Book, (Ed.Özer N) Şafak Matbaacılık San. İstanbul, 1994; 55.
  • 18) Yilmaz E, Erdem H, Ozguc M, Coskun T, Ozcelik U, Gocmen A, Ozalp I. Study of 12 mutations in Turkish cystic fibrosis patients. Hum Hered. 1995; 45(3):175-177.
  • 19) Kilinc MO, Ninis VN, Dagli E, Demirkol M, Ozkinay F, Arikan Z, Cogulu O, Huner G, Karakoc F, Tolun A. Highest heterogeneity for cystic fibrosis: 36 mutations account for 75% of all CF chromosomes in Turkish patients. Am J Med Genet. 2002; 113(3):250-257.
  • 20) İnal TC, Yüregir G, Özer G, Yüksel B. Detection of Cystic Fibrosis ΔF508 Mutation in the Çukurova Region. Turk J Med Sci 2000; 30: 605-607.
  • 21) Hundrieser J, Bremer S, Peinemann F, Stuhrmann M, Hoffknecht N, Wulf B, Schmidtke J, Reiss J, Maass G, Tummler B. Frequency of the F508 deletion in the CFTR gene in Turkish cystic fibrosis patients. Hum Genet. 1990; 85(4):409-10.
  • 22) Kerem E et al. European Cystic Fibrosis Registry Report on 2003 data. European Cystic Fibrosis Society (ECFS) 2006; http://www.ecfsoc.org/ECFRegistry/RCFR_annual_report_2003_Final.pdf
  • 23) Schwartz M, Johansen HK, Koch C, Brandt NJ. Frequency of the delta F508 mutation on cystic fibrosis chromosomes in Denmark. Hum Genet. 1990; 85(4):427-428.
  • 24) Dork T, Dworniczak B, Aulehla-Scholz C, Wieczorek D, Bohm I, Mayerova A, Seydewitz HH, Nieschlag E, Meschede D, Horst J, Pander HJ, Sperling H, Ratjen F, Passarge E, Schmidtke J, Stuhrmann M. Distinct spectrum of CFTR gene mutations in congenital absence of vas deferens. Hum Genet. 1997; 100(3-4): 365-377.
  • 25) Dayangac D, Erdem H, Yilmaz E, Sahin A, Sohn C, Ozguc M, Dork T. Mutations of the CFTR gene in Turkish patients with congenital bilateral absence of the vas deferens. Hum Reprod. 2004; 19(5):1094-1100.
  • 26) Şamlı MM. Konjenital vas deferens agenezisi. İnfertilite 2004; 18:235-237.
  • 27) Chen X, Zehnbauer B, Gnirke A, Kwok P. Fluorescence resonance energy transfer detection as a homogeneous DNA diagnostic method. Proc Natl Acad Sci USA 1997; 94(20):10756-10761.
  • 28) Dodson LA, Kant JA. Two-temperature PCR and heterodublex detection: application to rapid cystic fibrosis screening. Mol Cell Probes. 1991; 5(1):21-25.
  • 29) Eggerding FA, Iovannisci DM, Brinson E, Grossman P, Winn-Deen ES. Fluorescence-based oligonucleotid ligation assay for analysis of cystic fibrosis transmembrane conductance regulator gene mutations. Hum Mutat. 1995; 5(2):153-165.
  • 30) Fanen P, Ghanem N, Vidaud M, Besmond C, Martin J, Costes B, Plassa F, Goossens M. Molecular characterization of cystic fibrosis: 16 novel mutations identified by analysis of the whole cystic fibrosis conductance transmembrane regulator (CFTR) coding regions and splice site junctions. Genomics. 1992; 13(3):770-776.
  • 31) Lee LG, Connell CR, Bloch W. Allelic discrimination by nick-translation PCR with fluorogenic probes. Nucleic Acids Res. 1993; 21(16):3761-3766.
  • 32) Wittwer CT, Marshall BC, Reed GH, Cherry JL. Rapid cycle allele-specific amplification: studies with the cystic fibrosis delta F508 locus. Clin Chem. 1993; 39(5):804-809.
  • 33) Gundry CN, Bernard PS, Herrman MG, Reed GH, Whittwer CT. Rapid F508del and F508C assay using fluorescent hybridization probes. Genet Test 1997; 3(4):365-370.
  • 34) Girardet A, Cathala P, Claustres M. Rapid detection of the deltaF508 mutation in single cells using DHPLC: implications for preimplantation genetic diagnosis. J Assist Reprod Genet. 2003; 20(4):153-156.
Ege Tıp Dergisi-Cover
  • ISSN: 1016-9113
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1962
  • Yayıncı: Ersin HACIOĞLU