Apoptozis ve hücre döngüsü

Normal fizyolojik şartlarda, hasarlı veya yaşlı hücreler, apopitoz (Yn. apo, uzak; ptosis, düşmek) olarak adlandırılan, genetik olarak düzenlenen bir hücre ölüm programıyla kendi kendilerini öldürmektedir. Apototik sürecin temelde nekroz ile morfolojik ve fonksiyonel açılardan ayrımlanması gerekmektedir. Apoptozis, onkogenezis ve hücre döngüsü ile yakın ilişki göstermektedir. Bu nedenle apototik yolakların ortaya konması, bu yolaklarla hücre döngüsü etkileşimlerinde karşılaşılan moleküler mekanizmaların tespiti ve hücre döngüsü ile onun üzerinde inhibitör etki gösteren etkenlerin başta siklinler ve siklin bağımlı kinazlar olmak üzere araştırılması, oldukça büyük önem taşımaktadır. Kök hücre çalışmalarının yoğunluk kazandığı bu son günlerde (neden ilgili kök hücre ör kanser kök hücresimi), bu hücre grubununda, gösterdiği siklus karekteristik özelliklerinin ve bölünme kapasitelerinin incelenmesi, bu derlemeyle ortaya konmaya çalışılmıştır.

Apoptosis and cell cycle

Under normal physiological conditions, damaged or aged cells kill themselves by a genetically regulated cell death program called apoptosis (in Greek apo means -far or distant, and ptosis means -to fall off). The process of apoptosis has to be separated from necrosis by different morphological and functional properties. Apoptosis is closely connected to oncogenesis and the cell cycle. Therefore, it is important to study the apoptotic pathways and to show their corporate interaction with the molecular mechanisms of the cell cycle, especially their influence on cell cycle regulation by cyclins, cyclin-dependent kinases and inhibitors. In particular these days where stem cell research reaches its heights, it is indispensable to show cycle characteristics and division capacities of these cells, which the present review tries to resolve.

___

  • 1. Kierszenbaum AL, Tres LL (eds). Histology and Cell Biology; New York; Elsevier: 2006. ISBN:0-323-01639-1.
  • 2. Soubrane C, Mouawad R, Antoine EC, Verola O, Gil-Delgado M, Khayat D. A comparative study of Fas and Fas-ligand expression during melanoma progression. Br J Dermatol 2000;143(2):307-12. th
  • 3. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. Molecular Cell Biology, 4 ed. New York: Freeman; 2000; 66-72.
  • 4. Ciechanover A. Early work on the ubiquitin proteasome system, an interview with Aaron Ciechanover. Cell Death Differ 2000;12(9):1167–77.
  • 5. Ganley IG, Carroll K, Bittova L, Pfeffer S. Rab9 GTPase regulates late endosome size and requires effector interaction for Its stability. Mol Biol Cell 2004; 15(12): 5420-30.
  • 6. Alberts B, Bray D. Essential Cell Biology, New York; Garland Science: 2004.
  • 7. DiPaola RS. To arrest or not to G2-M cell-cycle arrest: Commentary re: AK Tyagi et al. Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest and apoptosis. Clin Cancer Res 2002;8(11): 3512-9.
  • 8. Sherr CJ. The Pezcoller lecture: Cancer cell cycles revisited. Cancer Res 2000;60(14):3698-95.
  • 9. Senderowicz AM, Sausville EA. Preclinical and clinical development of cyclin-dependent kinase modulators. J Natl Cancer Inst 2000;92(5):376-87.
  • 10. Jackson JR, Gilmartin A, Imburgia C, Winkler JD, Marshall LA, Roshak A. An indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell-cycle arrest caused by DNA damage. Cancer Res 2000;60(3):566-72.
  • 11. Hirose Y, Berger MS, Pieper RO. Abrogation of the Chk1 mediated (G2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res 2001;61(15): 5843-9.
  • 12. Bartek J, Falck J, Lukas J. Chk2 kinase - a busy messenger. Nat Rev Mol Cell Biol 2001; 2(12):877-86.
  • 13. Golias CH, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control: A mini review. Clin Pract 2004;58(12):1134-41.
  • 14. Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-Kappa and cell cycle regulation: The cyclin connection. Cytokine Growth Factor Rev 2001;12(1): 73-90.
  • 15. Dulic V, Lees E, Reed SI. Association of human cyclin E with a periodic G1-S phase protein-kinase. Science 1992;257(5078):1958-61.
  • 16. Gutierrez C, Ramirez-Parra E, Castellano MM, Del Pozo JC. G(1) to S transition: More than a cell cycle engine switch. Curr Opin Plant Biol 2002;5(6):480-6.
  • 17. Hirose Y, Berger MS, Pieper RO. Abrogation of the Chk1 mediated G2 checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res 2001;61(15):5843-9.
  • 18. Tyagi AK, Singh RP, Agarwal C, Chan DC, Agarwal R. Silibinin strongly synergizes human prostate cancer DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest and apoptosis. Clin Cancer Res 2002;8(11):3512-9.
  • 19. Fong LY, Mancini R, Nakagawa H, Rustgi AK, Huebner K. Combined cyclin D1 overexpression and zinc deficiency disrupts cell cycle and accelerates mouse forestomach carcinogenesis. Cancer Res 2003;63(14):4244-52.
  • 20. Lanza R, Gearhart J, Hogan B, Melton D, Pedersen R, Thomson J, Thomas ED, West M (eds). Essentials Of Stem Cell Biology. Massachusetts; Elsevier Academic Press: 2006.
  • 21. Lehman NL. The ubiquitin proteasome system in neuropathology. Acta Neuropathol 2009;118(3):329-47.
  • 22. Hoyt MAJ. A new view of the spindle checkpoint. Cell Biol 2001;154(5):909-11.
  • 23. Chang F, Steelman LS, Shelton JG, et al. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway (Review). Int J Oncol 2003;22(3):469-80.
  • 24. Sun Y. p53 and its downstream proteins as molecular targets of cancer. Mol Carcinog 2006;45(6):409-15.
  • 25. Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell 2006;127(2):265-75.
  • 26. Gil J, Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: All for one or one for all. Nat Rev Mol Cell Biol 2006;7(9):667-77.
Ege Tıp Dergisi-Cover
  • ISSN: 1016-9113
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 1962
  • Yayıncı: Ersin HACIOĞLU