Endemik Seseli resinosum Freyn & Sint. Bitkisinin Kuraklık Stresine Fizyolojik ve Antioksidatif Tepkileri

Seseli resinosum Freyn & Sint. Türkiye'nin Batı Karadeniz bölgesinin kayalık habitatına ait çok yıllık endemik bir bitkidir. Bu çalışmada, Seseli resinosum’un kuraklığa olan tepkilerini ve tolerans mekanizmasını anlamak için bağıl su içeriği (RWC), klorofil floresansı, lipid peroksidasyonu (TBARS), hidrojen peroksit (H2O2) miktarı, prolin içeriği ve antioksidan enzim miktarındaki değişimleri kuraklık stresini teşvik eden polietilen glikol (PEG) 6000 ( %5, 10 ve 15) varlığında analiz edilmiştir. Yapraktaki RWC değişmeden kalırken, klorofil floresansı yüksek PEG seviyesi (%15) ile azalmıştır. Ayrıca, PEG uygulamasının artmasıyla H2O2 ve prolin birikimi gözlenmiş, ancak TBARS miktarında artış belirlenmemiştir. Dahası, kuraklık altındaki H2O2 miktarındaki artış, süperoksit dismutaz, katalaz ve glutatyon redüktaz aktivitelerindeki artışa eşlik etmiştir. Diğer taraftan, PEG-teşvikli kuraklık stresi peroksidaz ve askorbat peroksidaz aktivitelerinde azalmaya neden olmuştur. Bu sonuçlar, endemik Seseli resinosum bitkisinin, kurak şartlar altında antioksidan enzim aktivitelerindeki artışla su durumunu koruyarak etkili bir kuraklık toleransına sahip olduğunu göstermektedir. Bu çalışmada, endemik Seseli resinosum'un fizyolojik ve antioksidatif tepkileri hakkında önemli bilgiler ilk kez ortaya konulmuştur.

Physiological and Antioxidative Responses of Endemic Plant Seseli resinosum Freyn & Sint. to Drought Stress

Seseli resinosum Freyn & Sint. is an endemic perennial plant of rocky habitat of Western Black Sea region of Turkey. To understand drought responses and tolerance mechanism of Seseli resinosum, relative water content (RWC), chlorophyll fluorescence, lipid peroxidation (TBARS), hydrogen peroxide (H2O2), proline content and changes in antioxidant enzymes were assayed in polyethylene glycol (PEG) 6000 (5, 10 and 15%) induced drought stress in the present study. Leaf RWC maintained unchanged, while chlorophyll fluorescence reduced with high level of PEG (15%). Additionally, H2O2 and proline accumulation were determined with the increase of PEG application, but no increase in the amount of TBARS was determined. Moreover, the increment in H2O2 content under drought was accompanied by increased in superoxide dismutase, catalase and glutathione reductase activities. On the other hand, PEG-induced drought stress caused a reduction in peroxidase and ascorbate peroxidase activities. These results suggest that endemic Seseli resinosum plant have an efficient drought tolerance, as displayed by enhanced antioxidant enzyme activities with maintaining water status under drought conditions. In this study, important information about physiological and antioxidative responses of endemic Seseli resinosum was revealed for the first time.

___

  • Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D., Snider, J. L. and Dai, T. (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports, 8, 4615.
  • Aebi, H. (1984). Catalase in vitro. In: Methods in Enzymology. (eds) Colowick, S. P., Kaplan, N. O., Orlando: Academic Press, 114–121.
  • Amoah, J. N., Ko, C. S., Yoon, J. S. and Weon, S. Y. (2019). Effect of drought acclimation on oxidative stress and transcript expression in wheat (Triticum aestivum L.). Journal of Plant Interactions, 14(1), 492-505.
  • Asada, K. and Takahashi, M. (1987). Production and scavenging of active oxygen in photosynthesis. In: Photoinhibition. (eds) Kyle, D. J., Osmond, B. J., Arntzen, C. J., Elsevier, Amsterdam, pp. 227-287.
  • Ashraf, M. and Foolad, M.R. (2007). Roles of glycine betaine and proline in improvi
  • Aydin, H., Torun, H. and Eroglu, E. (2020). The utilizing potential of endemic taxa Cephalaria duzceënsis N. Aksoy, R. S. Göktürk and Seseli resinosum Freyn & Sint. in planting design with their morphological and physiological characteristics. Duzce University Journal of Forestry, 16(2), 89-104.
  • Ayyaz, A., Miao, Y., Hannan, F., Islam, F., Zhang, K., Xu, J., Farooq, M. A. and Zhou, W. (2021). Drought tolerance in Brassica napus is accompanied with enhanced antioxidative protection, photosynthetic and hormonal regulation at seedling stage. Physiologia Plantarum, 172(2), 1133–1148.
  • Basu, S., Roychoudhury, A., Saha, P. P. and Sengupta, D. N. (2010). Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation, 60, 51.
  • Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water stress studies. Plant Soil, 39, 205–207.
  • Beauchamp, C. and Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276–287.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of the protein-dye binding. Analytical Biochemistry, 72, 248–254.
  • Davis, P. H., Mill, R. R. and Tan, K. (1988). Flora of Turkey and the East Aegean Islands, vol. 10. Edinburgh, Edinburgh University Press.
  • Dogan, E., Duman, H., Tosun, A., Kürkçuoglu, M. and Baser, K. H. C. (2006). Essential oil composition of the fruits of Seseli resinosum Freyn et Sint. and Seseli tortuosum L. growing in Turkey. Journal of Essential Oil Research, 18(1), 57-59.
  • Duman, H. (2000). Seseli L. In: Flora of Turkey and the East Aegean Islands (suppl. 2), Guner, A., Ozhatay, N., Ekim, T., Başer, K. H. C. (eds.). Edinburgh: Edinburgh University Press, p. 141.
  • Foyer, C. H. and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta, 133, 21–25.
  • Fracasso, A., Trindade, L. and Amaducci, S. (2016). Drought tolerance strategies highlighted by two Sorghum bicolor races in a dry-down experiment. Journal of Plant Physiology, 190, 1–14.
  • Gill, S. S. and Tuteja, N. (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909– 930.
  • Gill, S. S., Anjum, N. A., Gill, R., Yadav, S., Hasanuzzaman, M., Fujita, M., Mishra, P., Sabat, S. C. and Tuteja, N. (2015). Superoxide dismutase-mentor of abiotic stress tolerance in crop plants. Environmental Science and Pollution Research, 22, 10375– 10394.
  • Hasanuzzaman, M., Bhuyan, M., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M. and Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681.
  • Hassan, N., Ebeed, H. and Aljaarany, A. (2020). Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiology and Molecular Biology of Plants, 26, 233– 245.
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts, I. kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125, 189-198.
  • Ings, J., Mur, L. A., Robson, P. R. and Bosch. M. (2013). Physiological and growth responses to water deficit in the bioenergy crop Miscanthus× giganteus. Frontiers and Plant Science, 4, 468–475.
  • Jungklang, J., Saengnil, K. and Uthaibutra, J. (2017). Effects of water deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi Journal of Biological Sciences, 24, 1505–1512.
  • Kaiser, W. M. (1979). Reversible inhibition of the Calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide. Planta, 145, 377–382.
  • Kaya, A., Demirci, B. and Base, K. H. C. (2003). The essential oil of Seseli tortuosum L. growing in Turkey. Flavour and Fragrance Journal, 18, 159–161.
  • Kaya, C. (2021). Nitrate reductase is required for salicylic acid-induced water stress tolerance of pepper by upraising the AsA-GSH pathway and glyoxalase system. Physiologia Plantarum, 172, 351–370.
  • Khan, S., Shehzad, O., Lee, K. J., Tosun, A. and Kim, Y. S. (2014). Anti-inflammatory properties of samidin from Seseli resinosum through suppression of NF-κB and AP-1- mediated-genes in LPS-stimulated RAW 264.7 cells. Archives of Pharmacal Research, 37(11), 1496-503.
  • Killi, D., Raschi, A. and Bussotti, F. (2020). Lipid peroxidation and chlorophyll fluorescence of photosystem II performance during drought and heat stress is associated with the antioxidant capacities of C3 sunflower and C4 maize varieties. International Journal of Molecular Sciences, 21, 4846.
  • Kupeli, E., Tosun, A. and Yesilada, E. (2006). Anti-inflammatory and antinociceptive activities of Seseli L. species (Apiaceae) growing in Turkey. Journal of Ethnopharmacology, 104, 310–314.
  • Liu, J., Lu, B. and Xun, A. L. (2000). An improved method for the determination of hydrogen peroxide in leaves. Progress in Biochemistry and Biophysics, 27, 548–551.
  • Mahajan, S. and Tuteja, N. (2005). Cold, salinity and drought stresses: An overview, Archives of Biochemistry and Biophysics, 444, 139.
  • Mårtensson, L. M., Carlsson, G., Prade, T., Kørup, K., Laerke, P. E. and Jensen, E. S. (2017). Water use efficiency and shoot biomass production under water limitation is negatively correlated to the discrimination against 13C in the C3 grasses Dactylis glomerata, Festuca arundinacea and Phalaris arundinacea. Plant Physiology and Biochemistry, 113, 1–5.
  • Mattos, L.M. and Moretti, C. L. (2015). Oxidative stress in plants under drought conditions and the role of different enzymes. Enzyme Engineering, 5, 1.
  • Mika, A. and Lüthje, S. (2003). Properties of guaiacol peroxidase activities isolated from corn root plasma membranes. Plant Physiology, 132, 1489–1498.
  • Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. (2004). The reactive oxygen gene network in plants. Trends in Plant Science, 9, 490–498.
  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.
  • Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 22, 867–880.
  • Ozfidan-Konakci, C., Yildiztugay, E. and Kucukoduk, M. (2015). Protective roles of exogenously applied gallic acid in Oryza sativa subjected to salt and osmotic stresses: effects on the total antioxidant capacity. Plant Growth Regulation, 75(1), 219-234.
  • Rady, M.M., Belal, H.E.E., Gadallah, F.M. and Semida, W.M. 2020. Selenium application in two methods promotes drought tolerance in Solanum lycopersicum plant by inducing the antioxidant defense system. Scientia Horticulturae, 266, 109290.
  • Rizhsky, L., Liang, H. and Mittler, R. (2003). The water-water cycle is essential for chloroplast protection in the absence of stress. Journal of Biological Chemistry, 278(40), 38921-38925.
  • Sadak, M. S., El-Bassiouny, H. M. S. and Dawood, M. G. (2019). Role of trehalose on antioxidant defense system and some osmolytes of quinoa plants under water deficit. Bulletin of the National Research Centre, 43, 5.
  • Sarker, U. and Oba, S. (2018). Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Scientific Reports, 8, 16496.
  • Seeman, J. R. and Cristley, C. (1985). Effects of salinity stress on the growth, ion content, stomatal behaviour and photosynthetic capacity on a salt-sensitive species, Phaseolus vulgaris L. Planta, 164,151–162.
  • Shivakrishna, P., Reddy, K. A. and Rao, D. M. (2018). Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi Journal of Biological Sciences, 25, 285–289.
  • Sun, Y., Wang, C., Chen, H. and Ruan, H. (2020). Response of plants to water stress: A meta-analysis. Frontiers in Plant Science, 11, 978.
  • Torre-González, A., Navarro-León, E., Albacete, A., Blasco, B. and Ruiz, J. M. (2017). Study of phytohormone profile and oxidative metabolism as key process to identification of salinity response in tomato commercial genotypes. Journal of Plant Physiology, 216, 164-173.
  • Tosun, A., Bahadır, Ö. and Dinç, E. (2007). Determination of anomalin and deltoin in Seseli resinosum by LC combined with chemometric methods. Chromatographia, 66, 677- 683.
  • Tosun, A., Baba, M., Bahadir, O. and Okuyama, T. (2006). Coumarins isolated from the roots of Seseli resinosum in Turkey. Pharmaceutical Biology, 44, 528–533. Verbruggen, N. and Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35, 753–759.
  • Wang, W. B., Kim, Y. H., Lee, H. S., Kim, K. Y., Deng, X. P. and Kwak, S. S. (2009). Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 47(7), 570-577.