Ekolojik Planlama İlkeleri Kullanılarak Kentsel Yeşil Altyapı Sistemlerinin Kurgulanması: Siirt Kenti Örneği

Bu çalışmanın amacı; ekolojik planlama ilkeleri kullanılarak Siirt için üst ölçekte bir yeşil altyapı planı oluşturmaktır. Bu planı oluşturmak için 1/100.000 ölçekli Çevre Düzeni Planı kullanılarak yeşil altyapı bileşenleri olan çekirdekler, bağlantılar ve bölgeler belirlenmiştir. Peyzaj çekirdek alanları peyzaj yapısı metrikleri kullanılarak analiz edilmiş ve parçalanma, bağlantılılık ve izolasyon açısından değerlendirilmiştir. Böylelikle, Siirt yeşil altyapı planına temel oluşturan peyzaj yapısı açısından önemli alanlar belirlenmiştir. En az masraflı yol ve Öklid uzaklık yöntemleri kullanılarak peyzajda işlevsel açıdan önemli olan alanlar arasındaki peyzaj bağlantılılığı analiz edilmiştir. Sonuç olarak, yeşil altyapı bileşenlerinin peyzajdaki ekolojik rolleri ve önem dereceleri Siirt için oluşturulan yeşil altyapı planının çerçevesini belirlemiştir. Tüm analizler yeşil altyapı kapsamında değerlendirildiğinde, biyolojik çeşitlilik ağı, ekilebilir ağ ve yeşil geçiş ağı oluşturularak Siirt için bir yeşil altyapı planı tasarlanmıştır. Bu çalışmada üst ölçekte yeşil bir altyapı planlanırken, bileşenlerin parçalanma durumları, hangilerinin korunabileceği veya kurtarılabileceği ve analiz sonuçlarına göre oluşturulan stratejilerin diğer planlara nasıl dahil edilip uygulanabileceği bütüncül bir yaklaşımla değerlendirilmiştir. Bu çalışmanın sonuçları ve kullanılan yöntem yeşil altyapı çalışmalarının uygulanabilirliği açısından diğer çalışmalara katkı sağlayacaktır.

Assessment of Basic Green Infrastructure Components as Part of Landscape Structure for Siirt

The aim of this study is to create a high-scaled green infrastructure plan for the Siirt, using ecological planning principles. In order to create this plan, the cores, corridors and sites, which are green infrastructure components, were determined using 1/100.000 scale Environmental Plan. Landscape core areas have been analysed using landscape structure metrics, and evaluated in terms of fragmentation, connectivity and isolation. In this way, the areas that are of high importance in terms of the landscape structure that will form the basis of the Siirt green infrastructure plan were determined. For landscape connectivity, links have been established between areas whose function is important in the landscape by using least-cost-path and Euclidean distance methods. As a result, the ecological roles and importance of the components in the landscape structure determined the green infrastructure plan framework for the Siirt. Considering these evaluations, a biodiversity network, arable network and green access network were created and a green infrastructure plan was designed in Siirt. In this study, while planning a green infrastructure on the upper scale, the fragmentation of the components, which ones can be protected or recovered, and how the strategies formed according to the results of the analysis can be included and applied in other plans were evaluated with an holistic approach. The results of this study and the method used will contribute to other studies in terms of applicability.


Referans1 Ahern, J. (2007). Green infrastructure for cities: The spatial dimension. In J. Ahern, V. Novotny, & P. Brown (Eds.), Cities of the Future: Towards Integrated Sustainable Water and Landscape Management (pp. 267-283). London: IWA Publishing.

Referans2 Balázs , D., Valkó , O., Tóthmérész , B., & Török, P. (2014). Alkali marshes of Central Europe-Ecology, management and nature conservation. In H. B. Shao (Ed.), Salt Marshes-Ecosystem, Vegetation and Restoration Strategies (pp. 1-11). New York: Nova Publishers.

Referans3 Balbi, M., Petit, E. J., Croci, S., Nabucet, J., Georges, R., Madec, L., & Ernoult, A. (2019). Ecological relevance of least cost path analysis: An easy implementation method for landscape urban planning. Journal of Environmental Management, 244(2019), 61-68. doi:10.1016/j.jenvman.2019.04.124

Referans4 Baum, K. A., Haynes, K. J., Dillemuth, F. P., & Cronin, J. T. (2004). The matrix enhances the effectiveness of corridors and stepping stones. Ecology, 85(10), 2671-2676. doi:10.1890/04-0500

Referans5 Benedict, M. A., & McMahon, E. T. (2006). Green Infrastructure: Linking Landscapes and Communities. Washington DC, Washington DC, United States: Island Press.

Referans6 Blackwell, M. A., Hogan, D. V., Pinay, G., & Maltby, E. (2009). The role of buffer zones for agricultural runoff. In E. Maltby, & T. Barker (Eds.), The wetlands handbook (pp. 417-439). Hoboken, New Jersey, United States: Blackwell Publishing Ltd.

Referans7 Boitani, L., Falcucci, A., Maiorano, L., & Rondinini, C. (2007). Ecological networks as conceptual frameworks or operational tools in conservation. Conservation Biology, 21(6), 1414-1422. doi:10.1111/j.1523-1739.2007.00828.x

Referans8 Castillo, C. S., Hackbart, V. S., Pivello, V. R., & dos Santos, R. F. (2015). Evaluating landscape connectivity for Puma concolor and Panthera onca among Atlantic forest protected areas. Environmental Management, 55, 1377-1389. doi:10.1007/s00267-015-0463-7

Referans9 Chang, Q., Li, X., Huang, X., & Wu, J. (2012). A GIS-based green infrastructure planning for sustainable urban land use and spatial development. Procedia Environmental Sciences, 12(2012), 491-498. doi:10.1016/j.proenv.2012.01.308

Referans10 Cohen, Y., & Amit-Cohen, I. (2009). Least cost path for green corridors delineation in maetropolitan margins: The distance weighting effects. Journal of Spatial Sciences, 54(1), 63-78. doi:10.1080/14498596.2009.9635167

Referans11 Coşkun Hepcan, Ç., & Hepcan, Ş. (2018). Kentsel yeşil altyapı analizi: Bornova örneği. Mediterranean Agricultural Sciences, 31(1), 37-43. doi:10.29136/mediterranean.378073

Referans12 Demir, A., & Baylan, E. (2019). The determination of green infrastructure components of Van city center and its near surroundings. International Journal of Scientific and Technological Research, 5(2), 328-343. doi:10.7176/JSTR/5-2-38

Referans13 Dramstad, W. E., Fry, G., Fjellstad, W. J., Skar, B., Helliksen, W., Sollund, M. L., . . . Framstad, E. (2001, December). Integrating landscape-based values—Norwegian monitoring of agricultural landscapes. Landscape and Urban Planning, 57(3-4), 257-268. doi:10.1016/S0169-2046(01)00208-0

Referans14 Eaton, T. T. (2018). Approach and case-study of green infrastructure screening analysis for urban stormwater control. Journal of Environmental Management, 209(2018), 495-504. doi:10.1016/j.jenvman.2017.12.068

Referans15 ESRI (2016). ArcGIS 10.5. Geographic Information System Programme. USA: ESRI.

Referans16 Fahrig, L. (2003, November). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution and Systematics, 34(1), 487-515. doi:10.1146/annurev.ecolsys.34.011802.132419

Referans17 Filazzola, A., Shrestha, N., & Maclvor, J. S. (2019). The contribution of constructed green infrastructure to urban biodiversity: A synthesis and meta‐analysis. Journal of Applied Ecology, 56(9), 2131-2143. doi:10.1111/1365-2664.13475

Referans18 Firehock, K. (2015). Strategic Green Infrastructure Planning - A Multi-Scale Approach. Washington DC: Island Press.

Referans19 Forman, R. T. (1983). An ecology of the landscape. BioScience, 33(9), 535.

Referans20 Forman, R. T. (1995). Land mosaics: the ecology of landscapes and regions. Cambridge: Cambridge University Press.

Referans21 Forman, R. T., & Godron, M. (1986). Landscape ecology. New York: Wiley.

Referans22 Gonçalves, A. B. (2010). An extension of GIS-based least-cost path modelling to the location of wide paths. International Journal of Geographical Information Sciences, 24(7), 983-996. doi:10.1080/13658810903401016

Referans23 Gustafson, E. J. (1998, March). Quantifying landscape spatial pattern: What is the state of the art? Ecosystems, 1(2), 143-156. doi:10.1007/s100219900011

Referans24 Gustafson, E. J., & Parker, G. R. (1992, June). Relationships between landcover proportion and indices of landscape spatial pattern. Landscape Ecology, 7(2), 101-110. doi:10.1007/BF02418941

Referans25 Hamer, A., Phoebe, J. S., & McDonnell, M. J. (2012). The importance of habitat design and aquatic connectivity in amphibian use of urban stormwater retention ponds. Urban Ecosystems, 15(2), 451-471. doi:10.1007/s11252-011-0212-5

Referans26 Kramer-Schadt, S., Kaiser, T. S., Frank, K., & Wiegand, T. (2011). Analyzing the effect of stepping stones on target patch colonisation in structured landscapes for Eurasian lynx. Landscape Ecology, 26, 501-513. doi:10.1007/s10980-011-9576-4

Referans27 Lee, D., & Oh, K. (2019). The green infrastructure assessment system (GIAS) and its applications for urban development and management. Sustainability, 11(14), 1-22. doi:10.3390/su11143798

Referans28 McGarigal, K., & Cushman, S. A. (2003). The gradient concept of landscape structure: Or, why are there so many patches? (pp. 1-44). Amherst: University of Massachusetts Amherst. Retrieved from http://www.umass.edu/landeco/pubs/Gradients_short.pdf

Referans29 McGarigal, K., & Marks, B. J. (1995). Fragstats: spatial pattern analysis program for quantifying landscape structure. United States: U.S. Department of Agriculture Pacific Northwest Research Station.

Referans30 McGarigal, K., Cushman, S. A., & Ene, E. (2012). FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. Amherst, Massachusetts, United States of America. Retrieved 3 13, 2020, from https://www.umass.edu/landeco/research/fragstats/fragstats.html

Referans31 McRae, B. H., & Kavanagh, D. M. (2011). Linkage Mapper Connectivity Analysis Software. Seattle, Washington, United States of America. Retrieved from http://www.circuitscape.org/linkagemapper

Referans32 McRae, B., & Kavanagh, D. (2017). User Guide: Linkage Pathways Tool of the Linkage Mapper Toolbox Version 2.0. Seattle, Washington, United States of America.

Referans33 Paudel, S., & Yuan, F. (2012, January 4). Assessing landscape changes and dynamics using patch analysis and GIS modelling. International Journal of Applied Earth Observation and Geoinformation, 16, 66-76. doi:10.1016/j.jag.2011.12.003

Referans34 Rempel, R. (2015, December 10). Spatial Ecology Program-Analysis Tools/Patch Analyst. Ontario, Ontario, United States of America: Queens Press, Ontario Ministry of Natural Resources and Forestry. Retrieved from http://www.cnfer.on.ca/SEP/

Referans35 Semlitsch, R., & Bodie, J. (2003). Biological criteria for buffer zones around wetlands and riparian habitats for amphibians and reptiles. Conservation Biology, 17(5), 1219-1228. doi:10.1046/j.1523-1739.2003.02177.x

Referans36 Staddon, C., Ward, S., De Vito, L., Zuniga-Teran, A., Gerlak, A. K., Schoeman, Y., . . . Booth, G. (2018). Contributions of green infrastructure to enhancing urban resilience. Environment Systems and Decisions, 38, 330-338. doi:10.1007/s10669-018-9702-9

Referans37 Ünal, U., & Akyüz, D. E. (2018). Yeşil altyapı uygulamaları kapsamında yağmur hendeklerinin önemi ve sürdürülebilir kent anlayışı ile değerlendirilmesi. İklim Değişikliği ve Çevre, 3(2), 55-63.

Referans38 Wang, X., Blanchet, F. G., & Koper, N. (2014). Measuring habitat fragmentation: An evaluation of landscape pattern metrics. Methods in Ecology and Evolution, 5(7), 634-646. doi:10.1111/2041-210X.12198

Referans39 Wei, J., Qian, J., Tao, Y., Hu, F., & Ou, W. (2018). Evaluating spatial priority of urban green infrastructure for urban sustainability in areas of rapid urbanization: A case study of Pukou in China. Sustainability, 10(2), 1-14. doi:10.3390/su10020327

Referans40 Yiğit Avdan, Z., Yıldız, D., & Çabuk, A. (2015). Yağmur suyu yönetimi açısından yeşil altyapı sistemlerinin değerlendirilmesi. 2nd International Sustainable Buildings Symposium (pp. 733-740). Ankara: Gazi University Press.

Referans41 Zheng, D., & Chen, J. (2000). Edge effects in fragmented landscapes: a generic model for delineating area of edge influences (D-AEI). Ecological Modelling, 132(3), 175-190. doi:0.1016/S0304-3800(00)00254-4

Referans42 Zuniga-Teran, A. A., Staddon, C., de Vito, L., Gerlak, A. K., Ward, S., Schoeman, Y., . . . Booth, G. (2020). Challenges of mainstreaming green infrastructure in built environment professions. Journal of. Environmental Planning and Management, 63(4), 710-732. doi:10.1080/09640568.2019.1605890

Referans43 Zurita, G., Pe'er, G., Bellocq, M. I., & Hansbauer, M. M. (2012). Edge effects and their influence on habitat suitability calculations: a continuous approach applied to birds of the Atlantic forest. Journal of Applied Ecology, 49(2), 503-512. doi:10.1111/j.1365-2664.2011.02104.x

Kaynak Göster

APA Sütünç, H , Çorbacı, Ö . (2020). Assessment of Basic Green Infrastructure Components as Part of Landscape Structure for Siirt . Düzce Üniversitesi Orman Fakültesi Ormancılık Dergisi , 16 (2) , 70-88 . Retrieved from https://dergipark.org.tr/tr/pub/duzceod/issue/59040/808469

2039 2419

Sayıdaki Diğer Makaleler

Kentsel Rekreasyonel Alanlardaki Bitki Varlığı; Rize Örneği / Plant Existence in Urban Recreational Areas; Rize Example

Ömer Lütfü ÇORBACI, Gökhan ABAY, Türker OĞUZTÜRK, Merve ÜÇOK

Sürdürülebili Peyzaj Kavraminda Kentsel Altyapi Sistemi: Trabzon Sahil Örneği


Güvenlikli Site Sakinlerinin Konut Tercihlerinin İrdelenmesi: Antalya Muratpaşa İlçesi Örneği

Hüseyin Samet AŞIKKUTLU, Latif Gürkan KAYA, Cengiz YÜCEDAĞ, Hatice KOLAK

Termal ve Basınç Uygulamasının Kızılçam Odununun Bazı Fiziksel Özellikleri Üzerine Etkisinin Belirlenmesi


Küre Dağları Milli Parkının (Kastamonu Bölümü) Endemik Bitkileri ve Öncelikli Koruma Alanlarının Sınıflandırılması


Huzurevi Bahçelerinin Yaş Dostu Tasarım Açısından İncelenmesi, Antalya-Türkiye Örneği

Bensu CÜCE, Tahsin YILMAZ

Ekolojik Planlama İlkeleri Kullanılarak Kentsel Yeşil Altyapı Sistemlerinin Kurgulanması: Siirt Kenti Örneği

Huriye Simten SÜTÜNÇ, Ömer Lütfü ÇORBACI

Ekosistem Hizmetleri Kavramının Havza Ölçeğinde Değerlendirilerek Planlamaya Entegrasyonu


Yığılca (Düzce) Balköy Bal Ormanı Florası


Düzce Üniversitesi Konuralp Kampüsü Makrofungusları