Electroencephalographic Complexity and Decreased Randomness in Drug-Naive Obsessive-Compulsive Patients

Çalışmalar birbirinden farklı nöropsikiyatrik hastalıklarda elektroensefalografide (EEG) karmaşıklığın anormal olduğunu göstermiştir. Ancak obsesif kompülsif bozuklukta (OKB) EEG karmaşıklığını araştıran çok az çalışma vardır.Yöntem: OKB'li hastalarda ve sağlıklı kontrollerde gözler kapalı halde 3 dakikalık EEG serileri çekildi. Her bir seri, 10 ve 30 saniyelik pencerelere bölünerek çoklu özdeş epoklara ayrıldı. Kolmogorov karmaşıklığı (KK) ve oto regresif (OR) model kullanılarak segmentlere ayrılmış EEG epoklarının karmaşıklığı hesaplandı. Bulgular: Gerek KK gerekse OR model, OKB'lilerde karmaşıklığın kontrollere göre anlamlı derecede düşük olduğunu gösterdi. Bu düşüklük hem 10 hem de 30 saniyelik pencereler için geçerliydi, ama OR modelde 10 saniyelik pencere hastalarla kontrolleri 30 saniyelik pencereye göre daha iyi ayırt etti.Sonuç: OKB'lilerin EEG'lerinde karmaşıklık ve rastgelelik azalmış, düzenlilik artmıştır. Kantitatif bir belirleme yapabilmek için EEG sinyallerinin segmentasyonu faydalıdır. Daha küçük pencereler EEG karmaşıklığını daha duyarlı biçimde gösterir

Tedavi almamış obsesif-kompulsif hastalarda elektroensefalografik karmaşıklık ve azalmış rasgelelik

Studies investigating the complexity in electroencephalography (EEG) in various neuropsychiatric disorders have yielded abnormal results. However, few studies have examined EEG complexity in obsessive-compulsive disorder (OCD). Methods: An eyes-closed scalp EEG series of 3 minutes was recorded in drug-naive patients with OCD and in healthy controls. Each single trial was segmented into multiple identical epochs using two windows of 10 and 30 seconds. Both Kolmogorov Complexity (KC) values and autoregressive (AR) model orders were estimated to quantify the EEG complexity for segmented EEG epochs. Results: The EEG complexity, measured by both KC and AR model orders and in estimations using window lengths of 10 and 30 seconds, was lower in the patients than in the controls. In the AR model orders, the 10-second window differentiated the patients and controls better than the 30-second window. Conclusion: OCD is characterized by low EEG complexity, increased regularity, or decreased randomness. Segmentation of EEG signals is useful for their quantitative identification, a smaller window providing a more sensitive characterization of EEG

___

  • 1. Takahashi T, Cho RY, Murata T, Mizuno T, Kikuchi M, Mizukami K, Kosaka H, Takahashi K, Wada Y. Age-related variation in EEG complexity to photic stimulation: a multiscale entropy analysis. Clin Neurophysiol 2009; 120:476-483. [CrossRef]
  • 2. Takahashi T. Complexity of spontaneous brain activity in mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:258-266. [CrossRef]
  • 3. Fernández A, Gomez C, Hornero R, Lopez-Ibor JJ. Complexity and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:267-276. [CrossRef]
  • 4. De Assis LPG. Neural binding, consciousness and mental disorders: complexity as a common element. Activ Nerv Super 2015; 57:110-121. [CrossRef]
  • 5. Bahrami B, Seyedsadjadi R, Babadi B, Noroozian M. Brain complexity increases in mania. Neuroreport 2005; 16:187-191. [CrossRef]
  • 6. Fernández A, Andreina MM, Hornero R, Ortiz T, Lopez-Ibor JJ. Analysis of brain complexity and mental disorders. Actas Esp Psiquiatr 2010; 38:229-238.
  • 7. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol 2005; 116:2266-2301. [CrossRef]
  • 8. Akar SA, Kara S, Latifoglu F, Bilgic V. Analysis of the complexity measures in the EEG of schizophrenia patients. Int J Neural Syst 2016; 26:1650008. [CrossRef]
  • 9. McBride JC, Zhao X, Munro NB, Smith CD, Jicha GA, Hively L, Broster LS, Schmitt FA, Kryscio RJ, Jiang Y. Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer's disease. Comput Methods Programs Biomed 2014; 114:153-163. [CrossRef]
  • 10. Deng B, Liang L, Li S, Wang R, Yu H, Wang J, Wei X. Complexity extraction of electroencephalograms in Alzheimer's disease with weighted-permutation entropy. Chaos 2015; 25:043105. [CrossRef]
  • 11. Ghorbanian P, Ramakrishnan S, Ashrafiuon H. Stochastic nonlinear oscillator models of EEG: the Alzheimer's disease case. Front Comput Neurosci 2015; 9:48. [CrossRef]
  • 12. Smits FM, Porcaro C, Cottone C, Cancelli A, Rossini PM, Tecchio F. Electroencephalographic Fractal Dimension in Healthy Ageing and Alzheimer's Disease. PLoS One 2016; 11:e0149587. [CrossRef]
  • 13. Billeci L, Sicca F, Maharatna K, Apicella F, Narzisi A, Campatelli G, Calderoni S, Pioggia G, Muratori F. On the application of quantitative EEG for characterizing autistic brain: a systematic review. Front Hum Neurosci 2013; 7:442. [CrossRef]
  • 14. Nandrino JL, Pezard L, Martinerie J, el Massioui F, Renault B, Jouvent R, Allilaire JF, Widlöcher D. Decrease of complexity in EEG as a symptom of depression. Neuroreport 1994; 5:528-530. [CrossRef]
  • 15. Pezard L, Nandrino JL, Renault B, el Massioui F, Allilaire JF, Müller J, Varela F, Martinerie J. Depression as a dynamical disease. Biol Psychiatry 1996; 39:991-999. [CrossRef]
  • 16. Thomasson N, Pezard L. Dynamical systems and depression: a framework for theoretical perspectives. Acta Biotheor 1999; 47:209-218. [CrossRef]
  • 17. Akdemir Akar S, Kara S, Agambayev S, Bilgic V. Nonlinear analysis of EEGs of patients with major depression during different emotional states. Comput Biol Med 2015; 67:49-60. [CrossRef]
  • 18. Akar SA, Kara S, Agambayev S, Bilgic V. Nonlinear analysis of EEG in major depression with fractal dimensions. Conf Proc IEEE Eng Med Biol Soc 2015; 2015:7410-7413. [CrossRef]
  • 19. Kalev K, Bachmann M, Orgo L, Lass J, Hinrikus H. Lempel-Ziv and multiscale Lempel-Ziv complexity in depression. Conf Proc IEEE Eng Med Biol Soc 2015; 2015:4158-4161. [CrossRef]
  • 20. Chae JH, Jeong J, Peterson BS, Kim DJ, Bahk WM, Jun TY, Kim SY, Kim KS. Dimensional complexity of the EEG in patients with posttraumatic stress disorder. Psychiatry Res 2004; 131:79-89. [CrossRef]
  • 21. Bob P, Kukleta M, Riecansky I, Susta M, Kukumberg P, Jagla F. Chaotic EEG patterns during recall of stressful memory related to panic attack. Physiol Res 2006; 55(Suppl 1):113-119.
  • 22. Zarafshan H, Khaleghi A, Mohammadi MR, Moeini M, Malmir N. Electroencephalogram complexity analysis in children with attention-deficit/hyperactivity disorder during a visual cognitive task. J Clin Exp Neuropsychol 2016; 38:361-369. [CrossRef]
  • 23. Chenxi L, Chen Y, Li Y, Wang J, Liu T. Complexity analysis of brain activity in attention-deficit/hyperactivity disorder: a multiscale entropy analysis. Brain Res Bull 2016; 124:12-20. [CrossRef]
  • 24. Reghunandanan S, Fineberg NA, Stein DJ. Obsessive-Compulsive and Related Disorders. Second Ed., Oxford University Press, 2015. [CrossRef]
  • 25. Ischebeck M, Endrass T, Simon D, Kathmann N. Altered frontal EEG asymmetry in obsessive-compulsive disorder. Psychophysiology 2014; 51:596-601. [CrossRef]
  • 26. Karadag F, Oguzhanoglu NK, Kurt T, Oguzhanoglu A, Atesci F, Ozdel O. Quantitative EEG analysis in obsessive compulsive disorder. Int J Neurosci 2003; 113:833-847. [CrossRef]
  • 27. Koprivová J, Congedo M, Horácek J, Prasko J, Raszka M, Brunovsky M, Kohútová B, Höschl C. EEG source analysis in obsessive-compulsive disorder. Clin Neurophysiol 2011; 122:1735-1743. [CrossRef]
  • 28. Koprivová J, Horácek J, Raszka M, Brunovsky M, Prasko J. Standardized low-resolution electromagnetic tomography in obsessive-compulsive disorder - a replication study. Neurosci Lett 2013; 548:185-189. [CrossRef]
  • 29. Pogarell O, Juckel G, Mavrogiorgou P, Mulert C, Folkerts M, Hauke W, Zaudig M, Möller HJ, Hegerl U. Symptom-specific EEG power correlations in patients with obsessive-compulsive disorder. Int J Psychophysiol 2006; 62:87-92. [CrossRef]
  • 30. Sherlin L, Congedo M. Obsessive-compulsive dimension localized using low-resolution brain electromagnetic tomography (LORETA). Neurosci Lett 2005; 387:72-74. [CrossRef]
  • 31. Velikova S, Locatelli M, Insacco C, Smeraldi E, Comi G, Leocani L. Dysfunctional brain circuitry in obsessive-compulsive disorder: source and coherence analysis of EEG rhythms. Neuroimage 2010; 49:977-983. [CrossRef]
  • 32. Aydin S, Arica N, Ergul E, Tan O. Classification of obsessive compulsive disorder by EEG complexity and hemispheric dependency measurements. Int J Neural Syst 2015; 25:1550010. [CrossRef]
  • 33. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. Fourth ed., Washington, DC: American Psychiatric Association; 1994.
  • 34. First MB, Spitzer RL, Gibbon M, Williams JBV. Structured Clinical Interview for DSM-IV Axis I Disorders, Clinican Version (SCIDIV). Washington, DC: American Psychiatric Press, Inc., 1996.
  • 35. Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, Heninger GR, Charney DS. The Yale-Brown Obsessive-Compulsive Scale. I. Development, use, and reliability. Arch Gen Psychiatry 1989; 46.1006-1111.
  • 36. Karamustafalıoğlu KO, Üçışık AM, Ulusoy M, Erkmen H. Yale-Brown Obsesyon Kompülsiyon Derecelendirme Ölçeği'nin geçerlik ve güvenilirlik çalışması. Ulusal Psikiyatri Kongresi Özet Kitabı, 1993, 86.
  • 37. Tek C, Uluğ B, Rezaki BG, Tanriverdi N, Mercan S, Demir B, Vargel S. Yale-Brown Obsessive Compulsive Scale and US National Institute of Mental Health Global Obsessive Compulsive Scale in Turkish: reliability and validity. Acta Psychiatr Scand 1995;91:410-413.
  • 38. Williams JB. A structured interview guide for Hamilton Depression Rating Scale. Arch Gen Psychiatr 1988; 45:742-747. [CrossRef]
  • 39. Akdemir A, Turkcapar MH, Orsel SD, Demirergi N, Dag I, Ozbay MH. Reliability and validity of the Turkish version of the Hamilton Depression Rating Scale. Compr Psychiatry 2001; 42(2):161-165.
  • 40. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 1988; 56:893-897. [CrossRef]
  • 41. Ulusoy M, Şahin, N., Erkmen, H. Turkish version of the Beck Anxiety Inventory: psychometric properties. J Cognit Psychother 1998; 12:28-35.
  • 42. Kolmogorov AN. Three approaches to the quantitative definition of information. Problems of Information Transmission 1965; 1:3-11.
  • 43. Lempel A, Ziv J. On the complexity of finite sequences. IEEE Trans Inf Theory 1976; 22:75-81. [CrossRef]
  • 44. Kaspar F, Schuster HG. Easily calculable measure for complexity of spatial temporal patterns. Phys Rev A 1987; 36:843-848. [CrossRef]
  • 45. Li M, Vitanyi P. An Introduction to Kolmogorov Complexity and its Applications. Second ed., New York: Springer-Verlag, 1997. [CrossRef]
  • 46. Petrosian A. Kolmogorov complexity of finite sequences and recognition of different preictal EEG patterns. 8th IEEE Symposium on Computer-based Medical Systems, 1995, 212- 217. [CrossRef]
  • 47. Proakis JG, Manolakis DG. Digital Signal Processing. Third ed., New Jersey: Prentice Hall, 1996; 925-956.
  • 48. Schneider T, Neumaier A. Algorithm 808: ARfit-A Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 2001; 27:58-65. [CrossRef]
  • 49. Hazarika N, Tsoi AC, Sergejew AA. Nonlinear considerations in EEG signal classification. IEEE Trans Signal Process 1997; 45:829- 836. [CrossRef]
  • 50. Anderson CW, Stolz EA, Shamsunder S. Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Trans Biomed Eng 1998; 45:277-286. [CrossRef]
  • 51. Sergejew AA, Tsoi AC. Markovian Analysis of EEG Signal Dynamics in Obsessive-compulsive Disorder: In Gath I and Inbaa GF (editors). Advances in Processing and Pattern Analysis of Biological Signals. New York: Plenum Press, 1996, 33-44. [CrossRef]
  • 52. Palaniappan R. Two-stage biometric authentication method using thought activity brain waves. Int J Neural Syst 2008; 18:59- 66. [CrossRef]
  • 53. Latchoumane CFV, Chung D, Kim S, Jeong J. Segmentation and characterization of EEG during mental tasks using dynamical nonstationarity. 3rd International Conference on Computational Intelligence in Medicine, 2007.
  • 54. Wackermann J, Lehmann D, Michel CM, Strik WK. Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int J Psychophysiol 1993; 14:269-283. [CrossRef]
  • 55. Lehmann D, Strik WK, Henggeler B, Koenig T, Koukkou M. Brain electric microstates and momentary conscious mind states as building blocks of spontaneous thinking: I. Visual imagery and abstract thoughts. Int J Psychophysiol 1998; 29:1-11. [CrossRef]
  • 56. Cao Y, Tung WW, Gao JB, Protopopescu VA, Hively LM. Detecting dynamical changes in time series using the permutation entropy. Phys Rev E Stat Nonlin Soft Matter Phys 2004; 70:046217. [CrossRef]
  • 57. Gao JB. Detecting nonstationarity and state transitions in a time series. Phys Rev E Stat Nonlin Soft Matter Phys 2001; 63:066202. [CrossRef]
  • 58. Schreiber T. Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions. Phys Rev Lett 1997; 78:843-846. [CrossRef]
  • 59. Fernández A, Quintero J, Hornero R, Zuluaga P, Navas M, Gómez C, Escudero J, García-Campos N, Biederman J, Ortiz T. Complexity analysis of spontaneous brain activity in attentiondeficit/hyperactivity disorder: diagnostic implications. Biol Psychiatry 2009; 65:571-577. [CrossRef]
  • 60. Sohn H, Kim I, Lee W, Peterson BS, Hong H, Chae JH, Hong S, Jeong J. Linear and non-linear EEG analysis of adolescents with attention-deficit/hyperactivity disorder during a cognitive task. Clin Neurophysiol 2010; 121:1863-1870. [CrossRef]
  • 61. Zarafshan H, Khaleghi A, Mohammadi MR, Moeini M, Malmir N. Electroencephalogram complexity analysis in children with attention-deficit/hyperactivity disorder during a visual cognitive task. J Clin Exp Neuropsychol 2016; 38:361-369. [CrossRef]
  • 62. Bob P, Svetlak M. Dissociative states and neural complexity. Brain Cogn 2011; 75:188-195. [CrossRef]
  • 63. Tóth E, Kondákor I, Túry F, Gáti A, Weisz J, Molnár M. Nonlinear and linear EEG complexity changes caused by gustatory stimuli in anorexia nervosa. Int J Psychophysiol 2004; 51:253-260. [CrossRef]
  • 64. Sporns O, Tononi G, Edelman GM. Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Netw 2000; 13:909-922. [CrossRef]
  • 65. Friston KJ. The disconnection hypothesis. Schizophr Res 1998; 30:115-125. [CrossRef]
  • 66. Friston KJ. Dysfunctional connectivity in schizophrenia. World Psychiatry 2002; 1:66-71.
  • 67. Méndez MA, Zuluaga P, Hornero R, Gómez C, Escudero J, Rodríguez-Palancas A, Ortiz T, Fernández A. Complexity analysis of spontaneous brain activity: effects of depression and antidepressant treatment. J Psychopharmacol 2012; 26:636-643. [CrossRef]
  • 68. Yang AC, Tsai SJ, Is mental illness complex? From behavior to brain. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:253-257. [CrossRef]
  • 69. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PCh, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 2002; 99(Suppl 1):2466-2472. [CrossRef]
  • 70. Takahashi T, Cho RY, Mizuno T, Kikuchi M, Murata T, Takahashi K, Wada Y. Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: a multiscale entropy analysis. Neuroimage 2010; 51:173-182. [CrossRef]
  • 71. Beucke JC, Sepulcre J, Talukdar T, Linnman C, Zschenderlein K, Endrass T, Kaufmann C, Kathmann N. Abnormally high degree connectivity of the orbitofrontal cortex in obsessive-compulsive disorder. JAMA Psychiatry 2013; 70:619-629. [CrossRef]
  • 72. Nakao T, Nakagawa A, Yoshiura T, Nakatani E, Nabeyama M, Yoshizato C, Kudoh A, Tada K, Yoshioka K, Kawamoto M, Togao O, Kanba S. Brain activation of patients with obsessivecompulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: a functional magnetic resonance imaging study. Biol Psychiatry 2005; 57:901-910. [CrossRef]
  • 73. Weinberger DR, Berman KF. Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond B Biol Sci 1996; 351:1495-1503. [CrossRef]
  • 74. Kang DH, Jang JH, Han JY, Kim JH, Jung WH, Choi JS, Choi CH, Kwon JS. Neural correlates of altered response inhibition and dysfunctional connectivity at rest in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:340-346. [CrossRef]
  • 75. Sakai Y, Narumoto J, Nishida S, Nakamae T, Yamada K, Nishimura T, Fukui K. Corticostriatal functional connectivity in non-medicated patients with obsessive-compulsive disorder. Eur Psychiatry 2011; 26:463-469. [CrossRef]
  • 76. Radhakrishnan N, Gangadhar BN. Estimating regularity in epileptic seizure time-series data. IEEE Eng Med Biol Mag 1998; 17:89-94. [CrossRef]
  • 77. Nakao T, Okada K, Kanba S. Neurobiological model of obsessivecompulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci 2014; 68:587-605. [CrossRef]