SULU ÇÖZELTİDEKİ REMAZOL MAVİSİ (RB) 'NIN KİTOSAN / SEP BİYOKOMPOZİTİ ÜZERİNE ADSORPSİYONU

Bu çalışmada, kitosan/sepiyolit (CS/SEP) biyokompozitleri hazırlanmıştır. SEP mineralinin molar oranlarının farklanmasının, boya çözeltisinin başlangıç pH değerinin ve sıcaklığın Remazol mavisinin (RB) sulu çözeltiden SEP üzerindeki adsorpsiyonu üzerine olan etkileri incelenmiştir. Adsorpsiyon kapasitesini belirlemek için, adsorpsiyon verileri Langmuir ve Freundlich eşitlikleri kullanılarak analiz edilmiştir. Langmuir eşitliği, Freundlich eşitliğinden daha yüksek uygunluk göstermiştir. Anyonik yapıdaki Remazol mavisinin kitosan biyokompoziti üzerindeki tutunması yapıdaki sepiyolit miktarına göre farklanmaktadır. Negatif yüklü sepiyolit minerali oranı arttıkça adsorpsiyon kapasitesi beklendiği gibi azalmaktadır ve adsorpsiyon kapasitesi SEP1, SEP2 ve SEP5 için 318 K de sırasıyla, 256, 126 ve 23 mg/g olarak belirlenmiştir. %99 RB uzaklaştırılmasına optimum değer olan pH 5’ te ulaşılmıştır. Kinetik deneylerden, adsorpsiyon sürecinin yalancı-ikincimertebe kinetik modeline uygunluk gösterdiği elde edilmiştir. Termodinamik hesaplamalar sonucunda entalpi ve aktivasyon enerjisi belirlenmiştir. Kitosan biyokompozitinin düşük pH değerlerinde adsorbent olarak kullanılabilir olduğu bulunmuştur. sonuçlarına göre fiziksel adsorpsiyon olduğu

ADSORPTION OF REMAZOL BLUE (Rb) ONTO THE CHITOSAN/SEP BIOCOMPOSITE FROM AQUEOUS SOLUTION

In this study, chitosan/sepiolite (CS/SEP) biocomposites were prepared. The effects of molar ratios of CS and SEP, initial pH and temperature on the adsorption capacities of the biocomposites have been investigated. In order to determine the adsorption capacities of the sorbents, the sorption data were analyzed by using Langmuir and Freundlich equations. Langmuir equation showed higher conformity than Freundlich equation. The adsorption of Remazol Blue which has an anionic structure on biocomposite of chitosan changes with the amounts of sepiolite on the biosorbent. As the ratio of negatively charged sepiolite increases, as expected, the adsorption capacity decreases. The adsorption capacities of biocomposites were determined as 256, 126 and 23 mg/g at 318 K for SEP1, SEP2 and SEP5, respectively. The removal of RB was reached to 99% at the optimum pH of 5. From kinetic experiments, it was observed that the sorption process followed the pseudo-second-order kinetic model. According to thermodynamic calculations, the adsorption nature is determined by the results of enthalpy and activation energy as physical activation. It was found that chitosan biocomposites can be used as adsorbents at relatively low pH values

___

  • Reisch, M. S. 1996. Asian textile dye makers are a growing power in changing
  • Engineering News, 74(3): 10-12. https://books.google.com.tr/books ?hl=tr&lr=&id=bCElDwAAQBAJ&oi =fnd&pg=PP1&dq=%5B1%5D%09 Reisch,+M.+S.+1996.+Asian+textile
  • +dye+makers+are+a+growing+po wer+in+changing+market.+Chemic al+%26+Engineering+News,+74(3) :+10- +&ots=ONSB5xPqvU&sig=oP1c f9je_DaPgYXAa4joms6tWA&redir _esc=y#v=onepage&q&f=false & Robinson, T., McMullan, G., Marchant, R., & Nigam, P. 2001.
  • Remediation of dyes in textile effluent: a critical review on current treatment technologies with alternative. Bioresource technology, 77(3): https://doi.org/10.1016/S0960- (00)00080-8 proposed 255.
  • Georgiou, D., Melidis, P., Aivasidis, A., & Gimouhopoulos, K. 2002.
  • Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes and pigments, 52(2): 69-78. https://doi.org/10.1016/S0143- (01)00078-X
  • Al-Degs, Y., Khraisheh, M. A. M., Allen, S. J., & Ahmad, M. N. 2000.
  • Effect of carbon surface chemistry on the removal of reactive dyes from Research, https://doi.org/10.1016/S0043- (99)00200-6 Water (3): 935.
  • Gupta, G. S., Prasad, G., & Singh, V. N. 1990. Removal of chrome dye from aqueous solutions by mixed adsorbents: fly ash and coal. Water Research, https://doi.org/10.1016/0043- (90)90063-C 50. Preparation and of Polymer Composites. Low, K. S., & Lee, C. K. 1997.
  • Quaternized rice husk as sorbent for Technology, 61(2): https://doi.org/10.1016/S0960- (97)00054-0 125.
  • Morais, L. C., Freitas, O. M., Goncalves, E. P., Vasconcelos, L. T., & Beca, C. G. 1999. Reactive dyes removal from wastewaters by adsorption on eucalyptus bark: variables that define the process. Water Research, 33(4): 979-988. https://doi.org/10.1016/S0043- (98)00294-2 Łebek, J., & Wardas, W. 1996.
  • Adsorption of some textile dyes on post-vanillin lignin during its precipitation. Cellulose chemistry and technology, 30(3-4): 213-221. http://cat.inist.fr/?aModele=affich eN&cpsidt=2549246
  • Mckay, G., Blair, H. S., & Gardner, J. The adsorption of dyes in chitin. III. Intraparticle diffusion processes. Journal Polymer Science, 28(5): 1767- http://onlinelibrary.wiley.com/doi /10.1002/app.1983.070280519/fu ll Applied
  • Kumar, M. N. R. 2000. A review of and chitin chitosan applications. Reactive functional polymers, 46(1): 1-27. https://doi.org/10.1016/S1381- (00)00038-9 and Wang, S. F., Shen, L., Tong, Y. J.,
  • Chen, L., Phang, I. Y., Lim, P. Q., & Liu, T. X. 2005. Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization.
  • Degradation and Stability, 90(1): 131. http://www.sciencedirect.com/sci ence/article/pii/S0141391005001 Polymer
  • Giles, C. H., & Hassan, A. S. A. 1958.
  • Adsorption at organic surfaces V— a study of the adsorption of dyes and other organic solutes by cellulose and chitin. Coloration Technology, http://onlinelibrary.wiley.com/doi /10.1111/j.1478- 1958.tb02236.x/full 857.
  • Bousher, A., Shen, X., & Edyvean, R. G. 1997. Removal of coloured organic matter by adsorption onto low-cost waste materials. Water Research, https://doi.org/10.1016/S0043- (97)00037-7 2092.
  • Allen, S. J., & Koumanova, B. 2005. Decolourisation water/wastewater adsorption.
  • University of Chemical Technology and Metallurgy, 40(3): 175-192. http://dl.uctm.edu/journal/node/j 3/Revew.pdf of using the Journal of Brauner K. & Preisinger A. 1956 und Struktur sepioliths. Tschhermarks Min. Pert. Mitt. https://link.springer.com/article/ 1007%2FBF01128033?LI=true Habish, A. J. parametara sinteze na svojstva kompozitnih adsorbenata na bazi sepiolita elementarnog gvožđa (Influence of nanočestica iron) (Doctoral Univerzitet u Lagaly, G.
  • Cengiz, S., Çavaş, L., & Yurdakoç, K. Bentonite and sepiolite as supporting media: Immobilization of catalase, Applied Clay Science, : http://www.sciencedirect.com/sci ence/article/pii/S0169131712001 120.
  • Poots, V. J. P., Mckay, G., & Healy, J. J. 1976. The removal of acid dye from adsorbents—II Research, http://www.sciencedirect.com/sci ence/article/pii/00431354769003 natural wood. Water 1070. (12):
  • Nollet, H., Roels, M., Lutgen, P., Van der Meeren, P., & Verstraete, W. ). Removal of PCBs from wastewater Chemosphere, 53(6), 655-665. http://www.sciencedirect.com/sci ence/article/pii/S0045653503005 fly ash.
  • Altınışık, A., Gür, E., & Seki, Y. (2010). A natural sorbent, Luffa cylindrica for the removal of a model basic dye. Journal of
  • Hazardous Materials, 179(1): 658- https://doi.org/10.1016/j.jhazmat. 03.053