Sıcak Plaka Kaynak Yöntemi ile Birleştirilmiş Benzer ve Benzer Olmayan Alçak Yoğunluklu Polietilen (AYPE) Bağlantıların Mekanik Özelliklerinin Karşılaştırmalı Olarak Araştırılması

Polimerlerin kullanımıyla ilgili endüstriyel talepler ve dolayısıyla daha güvenilir birleştirme teknikleri arayışı giderek artmaktadır. Termoplastikleri birleştirmek için en basit ve ekonomik yöntemlerden biri olan Sıcak Plaka Kaynağı (SPK) kullanımının güçlü bağlantılar ürettiği bilinmektedir. Bu çalışma, Alçak Yoğunluklu Polietilen (AYPE) malzeme ile Yüksek Yoğunluklu Polietilen (YYPE) malzemenin uygun parametreler eşliğinde SPK yöntemi kullanılarak, güvenilir biçimde birleştirilmesinin mümkün olduğunu ortaya koymaktadır. Araştırmada, benzer ve farklı polietilen sınıfları birbirleri ile birleştirilerek, bağlantıların mekanik özellikleri, çekme dayanımı ve çarpma davranışları açısından incelenmiştir. Elde edilen sonuçlar ana malzemeler ve bağlantıların kendi arasında karşılaştırılmıştır. Çekme deneyleri sonrası bağlantıların kırılma yüzeyleri de irdelenmiştir. Buna göre, AYPE malzemeler YYPE malzemeler ile birleştirilerek, AYPE malzemelerin kendi aralarındaki kaynak işlemine göre daha üstün çekme dayanımı ve şekil değiştirme davranışı elde edilmiştir. İlaveten, benzer olmayan kaynak bağlantılarında benzer bağlantılara göre çarpma enerjisinin büyük ölçüde arttığı belirlenmiştir.

Comparative Investigation of Mechanical Properties of Similar and Dissimilar Low Density Polyethylene (LDPE) Welds Joined with Hot Plate Welding Method

Industrial demands of utilizing polymers and therefore, the search for more reliable joining techniques is gradually increasing. The use of Hot Plate Welding (HPW), which is one of the simplest and most economical methods of joining thermoplastics, is known to manufacture strong joints. This study reveals that it is possible to join LDPE and HDPE snugly using HPW method with appropriate parameters. In the research, similar and dissimilar polyethylene classes are joined with each other and mechanical properties of the joints are examined in terms of the tensile strength and impact behaviors. Obtained results are compared considering the base materials themselves and between the joints. After the tensile tests, fracture surfaces of the joints are also scrutinized. Accordingly, LDPE are joined with HDPE, resulting in superior tensile strength and deformation behavior compared to the welding process of LDPE materials among themselves. Additionally, it has been reported that the impact energy significantly increases in dissimilar welds in comparison to the similar welds.

___

  • [1] Kiszka, A., Lomozik, M. 2013. Vibration welding of high density polyethylene HDPE – purpose, application, welding technology and quality of joints, Kovove Materialy, Cilt. 51, s. 63-70. DOI: 10.4149/km_2013_1_63
  • [2] Amanat, N., James, N.L., McKenzie, D.R. 2010. Welding methods for joining thermoplastic polymers for the hermeticenclosure of medical devices, Medical Engineering & Physics, Cilt. 32, s. 690-699. DOI: 10.1016/j.medengphy.2010.04.011
  • [3] Mubarak, Y.A., Abdulsamad, R.T. 2019. Thermal properties and degradability of low density polyethylene microcrystalline cellulose composites, Journal of Thermoplastic Composite Materials, Cilt. 32, s. 487-500. DOI: 10.1177/0892705718766387
  • [4] Moreno, M.M., ve ark. 2018. Mechanical and thermal properties of friction-stir welded joints of high density polyethylene using a non-rotational shoulder tool, The International Journal of Advanced Manufacturing Technology, Cilt. 97, s. 2489–2499. DOI: 10.1007/s00170-018-2102-y
  • [5] Rojas, K., ve ark. 2019. Effective antimicrobial materials based on low-density polyethylene (LDPE) with zinc oxide (ZnO) nanoparticles, Composites Part B, Cilt. 172, s. 173-178. DOI: 10.1016/j.compositesb.2019.05.054
  • [6] Charitos, I., Georgousis, G., Kontou, E. 2019. Preparation and Thermomechanical Characterization of Metallocene Linear Low-Density Polyethylene/Carbon Nanotube Nanocomposites, Polymer Composites, Cilt. 40, s. E1263-E1273. DOI: 10.1002/pc.24961
  • [7] Liang, J-Z. 2019. Melt spinning flow behaviour of high-density polyethylene blended with low-density polyethylene, Plastics, Rubber and Composites, Cilt. 48, s. 256-262. DOI: 10.1080/14658011.2019.1603026
  • [8] Siddique, S., ve ark. 2019. Structural and thermal degradation behaviour of reclaimed clay nano-reinforced low-density polyethylene nanocomposites, Journal of Polymer Research, Cilt. 26, s. 1-14. DOI: 10.1007/s10965-019-1802-9
  • [9] Zia, J., Paul, U.C., Heredia-Guerrero, J.A., Athanassiou, A., Fragouli, D. 2019. Low-density polyethylene/curcumin melt extruded composites with enhanced water vapor barrier and antioxidant properties for active food packaging, Polymer, Cilt. 175, s. 137-145. DOI: 10.1016/j.polymer.2019.05.012
  • [10] Chavan, S., Gumtapure, V., Peruma, D.A. 2019. Characterization of linear low-density polyethylene with graphene as thermal energy storage material, Materials Research Express, Cilt. 6, 065511. DOI: 10.1088/2053-1591/ab0e36
  • [11] Azizi, S., Ouellet-Plamondon, C.M., Nguyen-Tri, P., Fréchette, M., David, E. 2019. Electrical, thermal and rheological properties of low-density polyethylene/ethylene vinyl acetate/graphene-like composite, Composites Part B, Cilt. 177, 107288. DOI: 10.1016/j.compositesb.2019.107288
  • [12] Sabet, M., Soleimani, H. 2019. Broad studies of graphene and low-density polyethylene composites, Journal of Elastomers & Plastics, Cilt. 51, s. 527-561. DOI: 10.1177/0095244318802608
  • [13] Guichard, B., ve ark. 2019. Effect of a Post-Annealing Process on Microstructure and Mechanical Properties of High-Density Polyethylene/Silica Nanocomposites, Journal of Polymer Science, Part B: Polymer Physics, Cilt. 57, s. 535-546. DOI: 10.1002/polb.24809
  • [14] Zhang, Q., Khan, M.U., Lin, X., Cai, H., Lei, H. 2019. Temperature varied biochar as a reinforcing filler for high-density polyethylene composites, Composites Part B, Cilt. 175, 107151. DOI: 10.1016/j.compositesb.2019.107151
  • [15] Durmus, A., Ercan, N., Alanalp, M.B., Gökkurt, T., Aydin, I. 2019. Effects of Liquid Crystal Polymer and Organoclay Addition onthe Physical Properties of High-Density Polyethylene Films, Polymer Engineering and Science, Cilt. 59, s. 1344-1353. DOI: 10.1002/pen.25117
  • [16] Fairbrother, A., ve ark. 2019. Temperature and light intensity effects on photodegradation of high-density polyethylene, Polymer Degradation and Stability, Cilt. 165, s. 153-160. DOI: 10.1016/j.polymdegradstab.2019.05.002
  • [17] Liu, Y., Shao, X., Huang, J., Li, H. 2019. Flame sprayed environmentally friendly high density polyethylene (HDPE)–capsaicin composite coatings for marine antifouling applications, Materials Letters, Cilt. 238, s. 46-50. DOI: 10.1016/j.matlet.2018.11.144
  • [18] Zhang, Q., ve ark. 2017. The Dynamic Mechanical Analysis of Highly Filled Rice Husk Biochar/High-Density Polyethylene Composites, Polymers, Cilt. 9, 628, s. 1-10. DOI: 10.3390/polym9110628
  • [19] Bucknall, C.B., Drinkwater, I.C., Smith, G.R. 1980. Hot plate welding of plastics: Factors affecting weld strength, Polymer Engineerıng and Science, Cilt. 20, s. 432-440. DOI: 10.1002/pen.760200609
  • [20] Yousefpour, A., Hojjati, M., Immarigeon, J-P. 2004. Fusion Bonding/Welding of Thermoplastic Composites, Journal of Thermoplastic Composite Materials, Cilt. 17, s. 303-341. DOI: 10.1177/0892705704045187
  • [21] Friedrich, N., Hoffschlag, R., Schöppner, V., Schnieders, J., Gövert, S. 2012. Cycle Time Reduction by Forced Air Cooling For Hot Plate Welding, Welding in The World, Cilt. 56, s. 101-107. DOI: 10.1007/BF03321340
  • [22] da Costa, A.P., Botelho, E.C., Costa, M.L., Narita, N.E., Tarpani, J.R. 2012. A Review of Welding Technologies for Thermoplastic Composites in Aerospace Applications, Journal of Aerospace Technology and Management, Cilt. 4, s. 255-265. DOI: 10.5028/jatm.2012.04033912
  • [23] Birley, A.W., Buxton, R. 1989. The hot plate welding of high-density polyethylene, Polymer Testing, Cilt. 8, s. 277-287. DOI: 10.1016/0142-9418(88)90029-3
  • [24] Ülker, A., Kocatüfek, U.E., Sayer, S., Yeni, Ç. 2015. Application of the Taguchi method for the optimization of the strength of polyamide 6 composite hot plate welds, Materials Testing, Cilt. 57, s. 531-542. DOI: 10.3139/120.110741
  • [25] Tariq, F., Naz, N., Khan, M.A., Baloch, R.A. 2012. Failure Analysis of High Density Polyethylene Butt Weld Joint, Journal of Failure Analysis and Prevention, Cilt. 12, s. 168-180. DOI: 10.1007/s11668-011-9536-y
  • [26] Nonhof, C.J. 1996. Optimization of Hot Plate Welding for Series and Mass Production, Polymer Engineering and Science, Cilt. 36, s. 1184-1195. DOI: 10.1002/pen.10512
  • [27] Nieh, J-Y., Lee, L.J. 1998. Hot Plate Welding of Polypropylene. Part I: Crystallization Kinetics, Polymer Engineering and Science, Cilt. 38, s. 1121-1132. DOI: 10.1002/pen.10279
  • [28] Nieh, J-Y., Ni, J., Lee, L.J. 1998. Hot plate welding of polypropylene. Part II: Process simulation, Polymer Engineering and Science, Cilt. 38, s. 1133-1141. DOI: 10.1002/pen.10280
  • [29] Oliveira, M.J., Bernardo, C.A., Hemsley, D.A. 2001. Morphology and mechanical behavior of polypropylene hot plate welds, Polymer Engineering and Science, Cilt. 41, s. 1913-1922. DOI: 10.1002/pen.10888
  • [30] Taşkıran, E., Sayer, S., Özes, Ç., Yeni, Ç. 2015. Effect of process parameters and talc ratio on hot plate welding of polypropylene, Materialwissenschaft und Werkstofftechnik, Cilt. 46, s. 860-872. DOI: 10.1002/mawe.201500438
  • [31] Stokes, V.K. 1998. Experiments on the hot-tool welding of three dissimilar thermoplastics, Polymer, Cilt. 39, s. 2469-2477. DOI: 10.1016/S0032-3861(97)00569-7
  • [32] TS EN ISO 294-1(2018): Plastikler - Termoplastik malzemelerden enjeksiyon kalıplama ile deney parçalarının hazırlanması - Bölüm 1: Genel prensipler ve çok amaçlı çubuk deney parçalarının kalıplanması.
  • [33] https://app.petkim.com.tr/web/urun/File.ashx?fn=UR.12-BF-U1213&l=tr&fl=urunler (Erişim Tarihi: 13.12.2019).
  • [34] https://app.petkim.com.tr/web/urun/File.ashx?fn=UR.15-BF-U40203&l=tr&fl=urunler (Erişim Tarihi: 13.12.2019).
  • [35] Ehrenstein, G.W. 2004. Handbuch Kunststoff-Verbindungstechnik. Hanser. München, 710s.
  • [36] Mahmoud, M.E., ve ark. 2019. Design and testing of high‐density polyethylene nanocomposites filled with lead oxide micro‐ and nano‐particles: Mechanical, thermal, and morphological properties, Journal of Applied Polymer Science, Cilt. 136, 47812, s. 1-11. DOI: 10.1002/app.47812
  • [37] Addiego, F., ve ark. 2011. Quantification of Cavitation in Neat and Calcium Carbonate-Filled High-Density Polyethylene Subjected to Tension, Journal of Engineering Materials and Technology, Cilt. 133, 030904, s. 1-7. DOI: 10.1115/1.4004046
  • [38] Lushcheikin, G.A. 2017. Modelling the impact strength of polymeric materials, International Polymer Science and Technology, Cilt. 44, s. 27-32. DOI: 10.1177/0307174X1704401006
  • [39] https://www.curbellplastics.com/Research-Solutions/Plastic-Properties/HDPE-vs-LDPE (Erişim Tarihi: 24.01.2020).
  • [40] Nishimura, H., Narisawa, I. 1991. Evaluation of impact properties of butt-fusion-jointed medium-density polyethylene pipes for gas distribution, Polymer, Cilt. 32, s. 2199-2204. DOI: 10.1016/0032-3861(91)90046-L
  • [41] http://www.sdplastics.com/polyeth.html (Erişim Tarihi: 24.01.2020).
  • [42] Singh, G., Bhunia, H., Rajor, A., Choudhary, V. 2011. Thermal properties and degradation characteristics of polylactide, linear low density polyethylene, and their blends, Polymer Bulletin, Cilt. 66, s. 939–953. DOI: 10.1007/s00289-010-0367-x
  • [43] Brough, I., Haward, R.N., Healey, G., Wood, A. 2004. Scanning electron micrographs of high density polyethylene fracture surfaces, Polymer, Cilt. 45, s. 3115–3123. DOI:10.1016/j.polymer.2004.02.036
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi