SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME

Bu çalışmada, boru-kovan tipi bir ısı değiştiricisi şeklinde tasarlanan faz değişimli gizli ısıl enerji depolama sistemi için bir-boyutlu matematiksel bir model oluşturulmuştur. Modelin doğruluğunu kontrol etmek için basitleştirilmiş analitik çözüm ile karşılaştırmalar gerçekleştirilmiştir. Değişen ısı transfer akışkanı sıcaklığı ve boru malzemeleri için zamana bağlı ara-yüzey ilerlemeleri ve yerel sıcaklık dağılımları elde edilmiştir. Sonuç olarak, PE-32 gibi düşük ısı iletim katsayısına sahip boru malzemelerinin kullanılması durumunda depolanan enerji miktarının önemli ölçüde azaldığı belirlenmiştir

THERMAL ENERGY STORAGE WITH PHASE CHANGE IN CYLINDRICAL COORDINATES: ONE DIMENSIONAL NUMERICAL INVESTIGATION

In this study, a one-dimensional mathematical model is developed for a latent heat thermal energy storage system that is designed as a shell-and-tube heat exchanger. In order to reveal the validity of the model, comparisons are conducted with a simplified analytical solution. Time-wise variation of interface position and the local temperature distributions are obtained for various heat transfer fluid temperatures and pipe materials. As a result, it is obtained that the performance of the heat storage system considerably reduces by using pipe materials with lower thermal conductivity, such as PE-32

___

  • Seddegh S, Wang X, Henderson AD. A Comparative Study of Thermal Behavior of a Horizontal and Vertical Shell-and-Tube Energy Storage Using Phase Change Materials, Applied Thermal Engineering, Cilt. 93, 2016, s.348-358.
  • Christenson MS, Incropera FP. Solidification of an Aqueous Ammonium Chloride Solution in a Rectangular Cavity—I. Experimental Study, International Journal of Heat and Mass Transfer, Cilt. 32, No. 1, 1989, s.47–68,
  • Webb BW, Moallemi MK, Viskanta R. Experiments on Melting of Unfixed Ice in a Horizontal Cylindrical Capsule, Journal of Heat Transfer, Cilt. 109, No. 2, 1987, s.454–459.
  • Medrano M, Yılmaz MO, Nogués M, Martorell I, Roca J , Cabeza LF. Experimental Evaluation of Commercial Heat Exchangers for use as PCM Thermal Storage Systems, Applied Energy, Cilt. 86, No. 10, 2009, s.2047–2055.
  • Erek A, I. Dinçer I. An Approach to Entropy Analysis of a Latent Heat Storage Module, International Journal of Thermal Sciences, Cilt. 47, 2008, s.1077–1085.
  • Habeebullah BA. An Experimental Study on Ice Formation Around Horizontal Long Tubes, International Journal of Refrigeration, Cilt. 30, No. 5, 2007, s.789–797.
  • Wang WW, Wang LB, He YL. Parameter Effect of a Phase Change Thermal Energy Storage Unit with One Shell and One Finned Tube on its Energy Efficiency Ratio and Heat Storage Rate, Applied Thermal Engineering, Cilt. 93, 2016, s.50-60.
  • Erek A, Ezan MA. Experimental and Numerical Study on Charging Processes of an Ice-on-Coil Thermal Energy Storage System, International Journal of Energy Research, Cilt. 31, No. 2, 2007, s.158–176.
  • Li YQ, He YL, Song HJ, Xu C, Wang WW, Numerical Analysis and Parameters Optimization of shell-and-Tube Heat Storage Unit Using Three Phase Change Materials, Renewable Energy, Cilt59, 2013, s.92-99.
  • Trp A. An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit, Solar Energy, Cilt. 79, No. 6, 2005, s.648–660.
  • Erek A, Ilken Z, Acar MA. Experimental and Numerical Investigation of Thermal Energy Storage with a Finned Tube, International Journal of Energy Research., Cilt. 29, No. 4, 2005, s.283–301.
  • Lacroix M. Numerical Simulation of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit, Solar Energy, Cilt. 50, No. 4, 1993, s.357–367.
  • Abhat A. Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials, Solar Energy, Cilt. 30, No. 4, 1983, s.313–332.
  • Agyenim F, Hewitt N, Eames P, Smyth M. A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS), Renewable and Sustainable Energy Reviews, Cilt. 14, No. 2, 2010, s.615– 628.
  • Augspurger M, Udaykumar HS, A Cartesian Grid Solver for Simulation of a Phase- Change Material (PCM) Solar Thermal Storage Device, Numerical Heat Transfer, Part B: Fundamentals, Cilt. 69, No. 3, 2016, s.1-18.
  • Fan LW, Zhu ZQ, Zeng Y, Ding Q, Liu MJ, Unconstrained Melting Heat Transfer in a Spherical Container Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM), International Journal of Heat and Mass Transfer, Cilt. 95, 2016, s.1057-1069.
  • Voller VR, Swaminathan CR, Thomas BG. Fixed Grid Techniques for Phase Change Problems: A Review, International Journal of Numerical Methods in Engineering, Cilt. 30, No. 4, 1990, s.875–898.
  • Lacroix M, Voller VR. Finite Difference Solutions of Solidification Phase Change Problems: Transformed Versus Fixed Grids, Numerical Heat Transfer Part B: Fundamentals: An International Journal of Computation and Methodology, Cilt. 17, No. 1, 1990, s.25–41.
  • Cao Y, Faghri A. A Numerical Analysis of Phase-Change Problems Including Natural Convection, Journal of Heat Transfer, Cilt. 112, No. 3, 1990, s.812–816.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow, Series in computational methods in mechanics and thermal sciences, 1980, s.1–197.
  • M. N. Özışık, Heat conduction, John Wiley & Sons, 1993.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi