Pomza, Perlit ve Cam Elyaf Katkılarının Yüksek Sıcaklık Altında Kum-Kaolin Karışımlarının Kayma Dayanımı Davranışına Etkisi

Günümüzde sayısı ve çeşitliliği artan enerji yapıları ile birlikte, bu yapıları çevreleyen zeminlerin yüksek sıcaklıklar ve termal döngüler altında mühendislik özelliklerinin değişiminin detaylı bir şekilde anlaşılması büyük önem arz etmeye başlamıştır. Zeminler yüksek sıcaklığa maruz kalsalar da uzun yıllar boyunca mühendislik özelliklerini tasarım aşamasındaki değerlerde koruyabilmelidir. Literatürdeki çalışmalarda yüksek sıcaklık altında zeminlerin sıkışabilirlik, kayma dayanımı, hidrolik iletkenlik gibi mühendislik özelliklerinin olumsuz etkilendiği rapor edilmektedir. Perlit, pomza ve cam elyaf ısı yalıtımında yaygın olarak kullanılan yüksek sıcaklıklara karşı dayanıklı malzemelerdir. Bu nedenle kum-kaolin karışımlarının yüksek sıcaklık altında mühendislik özelliklerinin iyileştirilmesinde kullanılabilirler.

The Effect of Pumice, Perlite and Fiber Glass Addivitives on the Shear Strength Behavior of Sand-Kaolin Mixtures Under High Temperature

With increase in number and variety of energy structures, understanding of the changes in engineering properties of the soils surrounding energy geo-structures under high temperatures and thermal cycles has gained great importance. Soils should be able to maintain their engineering properties at the design limits for many years under high temperatures. In the literature, it was reported that the engineering properties of soils such as compressibility, shear strength, hydraulic conductivity adversely affected under high temperatures. Perlite, pumice and fiber glass are materials that are resistant to high temperatures, which are widely used in thermal insulation. Therefore, they can be used to improve the engineering properties of sand-kaolin mixtures under high temperatures. In this study, shear strength behavior of sand-kaolin mixtures in the presence of perlite, pumice and fiber glass additives was investigated. Shear strength tests were carried out under room temperature and high temperature (80°C) and the effects of additives under high temperature were compared. According to the results obtained, the shear strength of the additive-free sand-kaolin mixture increased when the temperature was increased to 80°C. When perlite additive was added to sand kaolin mixtures, the angle of internal friction decreased in general under all temperatures. Pumice and glass fiber additives increased the angle of internal friction value at both temperatures. Perlite and pumice additives decreased the shear strength both at room temperature and at high temperature. However, fiber glass increased the shear strength at room temperature, while it decreased the shear strength under high temperature. Keywords: Perlite, Pumice, Fiber Glass, High Temperature, Sand-Kaolin Mixture, Shear Strength

___

  • [1] https://www.perlite.org/ (Erişim Tarihi: 18.08.2021)
  • [2] Samar M., Saxena Shweta P. 2016. Study of Chemical and Physical Properties of Perlite and Its Application in India. International Journal of Science Technology and Management, Cilt. 5, s. 70–80. ISSN 2394-1537
  • [3] Gray, D.H., Ohashi, H. 1983. Mechanics of Fiber Reinforcement in Sand. Journal of Geotechnical Engineering, Cilt. 109(3), s. 335-353, DOI: 10.1061/(ASCE)0733-9410(1983)109:3(335)
  • [4] Maher, M.H., Ho, Y.C. 1994. Mechanical Properties of Kaolinite/Fiber Soil Composite. Journal of Geotechnical Engineering, Cilt. 120(8), s. 1381-1393. DOI: 10.1061/(ASCE)0733-9410(1994)120:8(1381)
  • [5] Kartal, G., Sarıgan, O., Baş, H., Ergül,H., İlgün, F. 1988. Türkiye Pomza Yatakları, Türkiye Pomza Taşı Semineri, İstanbul, s. 5-11.
  • [6] İlhan, S., Özdağ, H. 1997. Pomza Partiküllerinin Bazı Fiziksel ve Kimyasal Özelliklerinin Belirlenmesi. Bilimsel Madencilik Dergisi, Cilt. 36(3), s. 25-34.
  • [7] Alpaydin, S.G., Güneri, E., Yukselen-Aksoy, Y. 2022. Improvement of Shear Strength of Zeolite-Bentonite Liner Material Under High Temperatures with Tincal and Pumice. Teknik Dergi, Cilt. 33(5), in press. DOI: 10.18400/tekderg.788422
  • [8] Mitchell, J.K., 1969. Temperature Effects on the Engineering Properties and Behavior of Soils. Proceeding of International Conference on the Effects of Temperature and Heat on Engineering Behaviour of Soils, Cilt. 9(6), s. 9–28.
  • [9] Burghignoli, A., Desideri, A., Miliziano, S., A. 2000. Laboratory Study on the Thermomechanical Behaviour of Clayey Soils. Canadian Geotechnical Journal, Cit. 37(4), s.764–780. DOI: 10.1139/cgj-37-4-764
  • [10] Abuel-Naga, H. M., Bergado, D. T., Ramana, G. V., Grino, L., Rujivipat, P., Thet, Y. 2006. Experimental Evaluation of Engineering Behavior of Soft Bangkok Clay Under Elevated Temperature. Journal of Geotechnical and Geoenvironmental Engineering, Cilt. 132(7), s. 902–910. DOI: 10.1061/(ASCE)1090-0241(2006)132:7(902)
  • [11] https://www.kompozit.net/cam-elyaf-kirpilmis 3mm-1-kg (Erişim Tarihi: 18.08.2021)
  • [12] Yılmaz, G. 2011. The Effects of Temperature on the Characteristics of Kaolinite and Bentonite. Scientific Research and Essays, Cilt. 6(9), s. 1928-1939. DOI: https://doi.org/10.5897/SRE10.727