Karbon Fiber/ZnO Fotokatalizörlerin Üretimi ve Karakterizasyonu

Bu çalışmada farklı Zn2+ derişimlerine sahip başlangıç çözeltileri sol-jel daldırma kaplama yöntemi ile ticari karbon fiberler üzerine kaplanmıştır. Yapının kristalinitesini artırabilmek ve ZnO film oluşumunu sağlamak amacıyla 300 °C ‘de 1 saat süreyle ısıl işlem uygulanmıştır. Elde edilen karbon fiber/ZnO yapılar artan başlangıç çözeltisi derişimine bağlı olarak düzenli ve homojen morfolojik özellikler sergilemiştir.  Başlangıç Zn2+  derişimin artması, karbon fiber/ ZnO yapısının metilen mavisi sulu çözeltilerinin fotokatalitik parçalanmasında etkin rol oynamıştır. En yüksek fotokatalitik parçalanma hızı 25.10-4M Zn2+  derişimine sahip çözelti kullanılarak üretilen karbon fiber/ZnO ile 1,39 sa-1 olarak elde edilmiştir. 

Production and Characterization of Carbon Fiber/ZnO Photocatalyst

In this study, initial solutions with different Zn2+ concentrations were deposited on commercial carbon fibers by the sol-gel dip coating method. Heat treatment was applied at 300 °C for 1 hour in order to improve the crystallinity of the structure and to provide ZnO film formation. The resulting carbon fiber/ZnO structures exhibited regular and homogeneous morphological properties due to the increased initial solution concentration. The increase of initial Zn2+ concentration has played an active role in the photocatalytic degradation of aqueous solutions of methylene blue of carbon fiber/ZnO structure. The highest photocatalytic decomposition rate was obtained as 1.39 h-1 with carbon fiber / ZnO produced using a solution with 25.10-4 M Zn2+ concentration. 

___

  • [1] Fujishima A., Honda K., 1972. Electrochemical photolysis of water at a semiconductor electrode, Nature, Cilt. 238, s.37-38. DOI: 10.1038/238037a0
  • [2] Alessandro D. M., Maria E. F., Vittorio P., Giuliana I., 2017. ZnO for application in photocatalysis: From thin films to nanostructures, Materials Science in Semiconductor Processing, Cilt. 69, s. 44-51, DOI:10.1016/j.mssp.2017.03.029.
  • [3] Yun Z., Zhiming P., Xinchen W., 2013. Advances in photocatalysis in China, Chinese Journal of Catalysis, Cilt 34, s.1872-2067. DOI:10.1016/S1872-2067(12)60548-8.
  • [4] Kezhen Q., Bei C., Jiaguo Y., Wingkei H., 2017. Review on the improvement of the photocatalytic and antibacterial activities of ZnO, Journal of Alloys and Compounds, Cilt. 727, s. 792-820. DOI:10.1016/j.jallcom.2017.08.142.
  • [5] Asma T., Wiem B., Brigitte S., Ahmed A., Habib E., Mokhtar F., Rabah B., 2017. Structural and optical properties of Na doped ZnO nanocrystals: Application to solar photocatalysis, Applied Surface Science, Cilt 396, s. 1528-1538. DOI: 0.1016/j.apsusc.2016.11.204. DOI:10.1016/j.mssp.2017.03.029.
  • [6] Huan W., Xueqing Q., Ruisheng Z., Fangbao F., Yong Q., Dongjie Y., 2017. One-pot in-situ preparation of a lignin-based carbon/ZnO nanocomposite with excellent photocatalytic performance, Materials Chemistry and Physics, Cilt. 199, s.193-202. DOI:10.1016/j.matchemphys.2017.07.009.
  • [7] Migyeong K., Wan K. J., 2017. Purification of aromatic hydrocarbons using Ag–multiwall carbon nanotube–ZnO nanocomposites with high performance, Journal of Industrial and Engineering Chemistry, Cilt 47, s.94-101, DOI:10.1016/j.jiec.2016.11.018.
  • [8] Seongpil A., Bhavana N. J., Min W. L., Na Y. K., Sam S. Y., 2014. Electrospun graphene-ZnO nanofiber mats for photocatalysis applications, Applied Surface Science, Cilt. 294, 2014, s. 24-28 DOI:10.1016/j.apsusc.2013.12.159.
  • [9] Darvishi C. S., Rezaee A., Khataee A.R., Safari M., 2014. Photocatalytic process by immobilized carbon black/ZnO nanocomposite for dye removal from aqueous medium: Optimization by response surface methodology, Journal of Industrial and Engineering Chemistry, Cilt 20, s. 1861-1868, DOI:10.1016/j.jiec.2013.09.003.
  • [10] Yanru Z., Jianzhong M., Junli L., Yan B., 2017. Synthesis of fireworks-shaped ZnO/graphite-like carbon nanowires with enhanced visible-light photocatalytic activity and anti-photocorrosion, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 518 s. 57-63, DOI:10.1016/j.colsurfa.2016.12.050.
  • [11] Junfeng M., Wenfeng F., Yongqiang M., Zhiqiang Y., Shan C., Bingbing N., 2016. Electrochemical growth of ZnO coating on carbon fiber, Materials Chemistry and Physics, Cilt 171, s. 22-26, DOI:10.1016/j.matchemphys.2015.12.068.
  • [12] Demirci S., Yurddaskal M., Dikici T., Sarıoğlu C., 2018. Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances, Journal of Hazardous Materials, Cilt 345, s. 27-37, DOI:10.1016/j.jhazmat.2017.11.009.
  • [13] Dikici T., Demirci S., Erol M., 2017. Enhanced photocatalytic activity of micro/nano textured TiO2 surfaces prepared by sandblasting/acid-etching/anodizing process, Journal of Alloys and Compounds, Cilt. 694, s. 246-252, DOI:10.1016/j.jallcom.2016.09.330.
  • [14] Dikici T., Yildirim S., Yurddaskal M., Erol M., Yigit R., Toparli M., Celik E., 2015. A comparative study on the photocatalytic activities of microporous and nanoporous TiO2 layers prepared by electrochemical anodization, Surface and Coatings Technology, Cilt 263, s.1-7, DOI:10.1016/j.surfcoat.2014.12.076.