Kapalı Çevrim Kontrollü Bir Asenkron Motorda Simetrik Bileşenler Kullanılarak Yük Momenti Salınımının Tespiti

Bu çalışmada, kapalı çevrim hız kontrollü evirici beslemeli asenkron motorlarda mekanik arıza tespiti için anlık simetrik bileşenlerin (ASB) kullanımı incelenmiştir. Önerilen arıza tespit yöntemi, stator akımlarının ASB'lerinin hesaplanmasına dayanmaktadır. Pozitif güç bileşeninin spektral yoğunluğu (PSD), Rotasyonel İnvaryans Yöntemi Yoluyla İşaret Parametrelerinin Kestirimi (ESPRIT) ve en küçük kareler yöntemi (EKY) kullanılarak tahmin edilmektedir. Daha sonra, mekanik arıza tespiti ikili hipotez testi olarak kabul edilen genelleştirilmiş olasılık oranı testi (GLRT) kullanılarak yapılmıştır. Her iki stator akım ve kontrol döngülerinden çıkan modüle edilmiş sinyallerin, arıza tespitinde başarılı bir sonuç verdiği gösterilmiştir. Evirici beslemeli bir asenkron motorun analitik modelinden elde edilen benzetim sonuçları da, önerilen bu yaklaşımın etkinliğini göstermektedir. Bu da evirici beslemeli kapalı çevrim hız kontrollü bir asenkron motorda yük momenti salınımı için etkin bir arıza tespit yöntemi olduğu sonucunu vermektedir.

Detection of Load Torque Oscillation Using Symmetrical Components in a Closed Loop Controlled Inverter-fed Induction Motor

In this study, the use of instantaneous symmetrical components (ASB) for mechanical fault detection in induction motors with closed-loop controlled inverter supply has been investigated. The proposed fault detection method is based on the calculation of the ASBs of the stator currents. The spectral density (PSD) of the positive sequence power component is estimated using the least squares method (EKY). Then, mechanical fault detection is performed using the generalized likelihood ratio test (GLRT). Modulated signals from both stator currents and closed-loop have been shown to be successful in detecting faults. The simulation results in the analytical model of an induction motor with an inverter supply give the effectiveness of this proposed approach. This results in an effective fault detection method for an induction motor load torque oscillation controlled by a closed-loop control with an inverter supply.

___

  • [1] P. J. Tavner, “Published in IET Electric Power Applications Review of condition monitoring of rotating electrical machines,” IET Electr. Power Appl, vol. 2, no. 4, pp. 215–247, 2008.
  • [2] A. K. S. Jardine, D. Lin, and D. Banjevic, “A review on machinery diagnostics and prognostics implementing condition-based maintenance,” Mechanical Systems and Signal Processing, vol. 20, no. 7. pp. 1483–1510, 2006.
  • [3] M. Blodt, M. Chabert, J. Regnier, and J. Faucher, “Mechanical Load Fault Detection in Induction Motors by Stator Current Time-Frequency Analysis,” IEEE Trans. Ind. Appl., vol. 42, no. 6, pp. 1454–1463, 2006.
  • [4] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and fault-tolerant techniques-part I: Fault diagnosis with model-based and signal-based approaches,” IEEE Transactions on Industrial Electronics, vol. 62, no. 6. pp. 3757–3767, 2015.
  • [5] B. Trajin, M. Chabert, J. Regnier, and J. Faucher, “Hilbert versus Concordia transform for three-phase machine stator current time-frequency monitoring,” Mech. Syst. Signal Process., vol. 23, no. 8, pp. 2648–2657, 2009.
  • [6] S. Rajagopalan, J. A. Restrepo, J. M. Aller, T. G. Habetler, and R. G. Harley, “Nonstationary motor fault detection using recent quadratic time-frequency representations,” IEEE Trans. Ind. Appl., vol. 44, no. 3, pp. 735–744, 2008.
  • [7] F. Çıra, “Asenkron Motorlarda Gerçek Zamanlı Durum İzleme ve Arıza Tespiti” Gaziosmanpaşa Bilimsel Araştırma Dergisi, vol. 7 issue 1, pp. 12-24, 2018
  • [8] M. B. K. Bouzid and G. Champenois, “New expressions of symmetrical components of the induction motor under stator faults,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 4093–4102, 2013.
  • [9] G. Cablea, P. Granjon, and C. Bérenguer, “Three-phase electrical signals analysis for mechanical faults monitoring in rotating machine systems,” Mech. Syst. Signal Process., vol. 92, pp. 278–292, 2017.
  • [10] C. L. Fortescue, “Method of Symmetrical Co-Ordinates Applied to the Solution of Polyphase Networks,” Trans. Am. Inst. Electr. Eng., vol. XXXVII, no. 2, pp. 1027–1140, 1918.
  • [11] G. C. Paap, “Symmetrical components in the time domain and their application to power network calculations,” IEEE Trans. Power Syst., vol. 15, no. 2, pp. 522–528, 2000.
  • [12] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariancetechniques,” Acoust. Speech, Signal Process. [see also IEEE Trans. Signal Process. IEEE Trans., vol. 37, no. 7, pp. 984–995, 1989.
  • [13] M. H. J. Gruber and M. H. Hayes, “Statistical Digital Signal Processing and Modeling,” Technometrics, vol. 39, no. 3, p. 335, 1997.
  • [14] S. M. Kay, “Fundamentals of statistical signal processing: estimation theory,” Prentice-Hall Signal Processing Series. p. 595, 1993.