İstanbul'un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması

Bu çalışmada, İstanbul'da başlayan ve sürmekte olan kentsel dönüşüm projesi kapsamında inşa edilen konut türü binaların hemen hemen tümünde kullanılan taşıyıcı sistem modelinin deprem performansının araştırılması amaçlanmıştır. Bahsedilen taşıyıcı sistem modelinde, kolon ve perdelerden oluşan düşey ve yatay yük taşıyıcı elemanlar, dişli döşemeler ve bu döşemeler içinde teşkil edilen yassı kirişler ile birbirine bağlanmaktadır. Bu tür binaları temsil edecek şekilde seçilmiş orta yükseklikte bir betonarme bina güncel yönetmeliklere göre boyutlandırılmıştır. Daha sonra bu binanın deprem performansı araştırılmıştır. Bu çalışmadan elde edilen sonuçlar bu tür binaların yeterli deprem güvenliğini sağlamadığı yönündedir.

Investigation on Earthquake Safety of Buildings Constructed for the Urban Transformation of Istanbul

The purpose of this study is to investigate the seismic performance of a specific type structural system that is utilized for almost all of the new residential buildings currently constructed as part of the Istanbul Urban Transformation Project. The structural system under consideration is comprised of lateral and gravity system elements, namely columns and shear walls, that are connected by ribbed slabs and shallow flat beams placed within the slabs. Firstly, a representative building of the new stock of buildings is selected, and the structural members are proportioned and detailed according to the current Turkish structural and seismic codes. Then, the seismic performance of the building is investigated. The results handled in this study reveal that these type of buildings cannot satisfy the earthquake safety requirements defined in actual Turkish Seismic Code.

___

  • [1] Erdik, M., Aydinoglu, N., Fahjan, Y., Sesetyan, K., Demircioglu, M., Siyahi, B., Durukal, E., Ozbey, C., Biro, Y., Akman, H., Yuzugullu, O. 2003. Earthquake Risk Assessment for Istanbul Metropolitan Area, Earthquake Engineering and Engineering Vibration, Cilt. 2, No. 1, s. 1-23.
  • [2] B, Özmen. 2000. 17 Ağustos 1999 İzmit Körfezi Depreminin Hasar Durumu (Rakamsal Verilerle). Türkiye Deprem Vakfı, Ankara, 132s.
  • [3] B, Özmen. 2000. 12 Kasım 1999 Düzce Depreminin Konut ve İşyeri Hasarları (Rakamsal Verilerle). Bayındırlık ve İskân Bakanlığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi, Ankara, s. 155- 214.
  • [4] Özcebe, G., Yücemen, M.S., Aydogan, V., Yakut, A. 2003. 'Preliminary seismic vulnerability assessment of existing RC buildings in Turkey-Part I' Seismic Assessment and Rehabilitation of Existing Buildings, NATO Science Series, Cilt. 4, No. 29, s. 29-42.
  • [5] Yakut, A., Aydogan, V., Özcebe, G., Yücemen, M.S. 2003. 'Preliminary seismic vulnerability assessment of existing RC buildings in Turkey-Part II' Seismic Assessment and Rehabilitation of Existing Buildings, NATO Science Series, Cilt. 4, No. 29, s. 43-58.
  • [6] Ozcebe, G., Sucuoglu, H., Yucemen, M.S., Yakut, A., Kubin, J. 2006. Seismic Risk Assessment of Existing Building Stock in Istanbul a Pilot Application in Zeytinburnu District, 8th US National Conference on Earthquake Engineering, San Francisco, p.1737.
  • [7] Ansal, A., Akinci, A., Cultrera, G., Erdik, M., Pessina, V., Tönük, G., Ameri, G. 2009. Loss Estimation in Istanbul Based On Deterministic Earthquake Scenarios of the Marmara Sea Region (Turkey), Soil Dynamics and Earthquake Engineering, Cilt. 29, No. 4, s. 699- 709.
  • [8] Yakut, A., Sucuoğlu, H., Akkar, S. 2012. Seismic Risk Prioritization of Residential Buildings in Istanbul, Earthquake Engineering and Structural Dynamics, Cilt. 41, No. 11, s. 1533-1547.
  • [9] Japan International Co-operation Agency and Istanbul Metropolitan Municipality. 2002. 'The Study on a Disaster Prevention/Mitigation Basic Plan in Istanbul Including Seismic Microzonation in the Republic of Turkey' Final Report, Tokyo-İstanbul.
  • [10] Metropolitan Municipality of Istanbul Planning and Construction Directoriat Geotechnical and Earthquake Investigation Department. 2003. Earthquake Master Plan for Istanbul, Istanbul.
  • [11] Erberik, M.A., Elnashai, A.S. 2004. Fragility Analysis of Flat-Slab Structures, Engineering Structures, Cilt. 26, No. 7, s. 937-948.
  • [12] Robertson, I.N., Kawai, T., Lee, J., Enomoto, B. 2002. Cyclic Testing of Slab-Column Connections with Shear Reinforcement, ACI Structural Journal, Cilt. 99, No. 5, s. 605-613.
  • [13] Brown, S., Dilger, W. 2004. Design of Slab-Column Connections to Resist Seismic Loading, 13th World Conference on Earthquake Engineering, Vancouver, p.2832.
  • [14] Coelho, E., Candeias, P., Anamateros, G., Zaharia, R., Taucer, F., Pinto, A.V. 2004. Assessment of the Seismic Behaviour of RC Flat Slab Building Structures, 13th World Conference on Earthquake Engineering, Vancouver, 2004, p.2630.
  • [15] Zekioglu, A., Willford, M., Jin, L., Melek, M. 2007. Case Study Using the Los Angeles Tall Buildings Structural Design Council Guidelines: 40-Storey Concrete Core Wall Building, The Structural Design of Tall and Special Buildings, Cilt. 16, No. 5, s. 583-597.
  • [16] Klemencic, R., Fry, J.A., Hooper, J.D., Morgen, B.G. 2007. PerformanceBased Design of Ductile Concrete Core Wall Buildings--Issues to Consider Before Detailed Analysis, The Structural Design of Tall and Special Buildings, Cilt. 16, No. 5, s. 599-614.
  • [17] Rha, C., Kang, T.H.K., Shin, M., Yoon, J.B. 2014. Gravity and Lateral LoadCarrying Capacities of Reinforced Concrete Flat Plate Systems, ACI Structural Journal, Cilt. 111, No. 4, s. 753-764.
  • [18] Gogus, A., Wallace, J.W. 2015. Fragility Assessment of Slab-Column Connections, Earthquake Spectra, Cilt. 31, No. 1, s. 159-177.
  • [19] Lee, H.S., Hwang, K.R., Kim, Y.H. 2015. Seismic Performance of a 1:15-Scale 25-Story RC Flat-Plate Corewall Building Model, Earthquake Engineering and Structural Dynamics, Cilt. 44, No. 6, s. 929-953.
  • [20] Sen, S., Singh, Y. 2015. "Seismic Performance of Flat Slab Buildings", in Advances in Structural Engineering, (Ed.) V. Matsagar, India: Springer India, s. 897-907.
  • [21] Surumi, R.S., Jaya, K.P., Greeshma, S. 2015. Modelling and Assessment of Shear Wall-Flat Slab Joint Region in Tall Structures, Arabian Journal for Science and Engineering, Cilt. 40, No. 8, s. 2201-2217.
  • [22] Siah, W.L., Stehle, J.S., Mendis, P., Goldsworthy, H. 2003. Interior Wide Beam Connections Subjected to Lateral Earthquake Loading, Engineering Structures, Cilt. 25, No. 3, s. 281-291.
  • [23] Benavent-Climent, A. 2005. Shaking Table Tests of Reinforced Concrete Wide Beam-Column Connections, Earthquake Engineering and Structural Dynamics, Cilt. 34, No. 15, s. 1833-1839.
  • [24] Benavent-Climent, A. 2007. Seismic Behavior of RC Wide Beam-Column Connections under Dynamic Loading, Journal of Earthquake Engineering, Cilt. 11, No. 4, s. 493- 511.
  • [25] Benavent-Climent, A., Cahis, X., Zahran, R. 2009. Exterior Wide Beam Column Connections in Existing RC Frames Subjected to Lateral Earthquake Loads, Engineering Structures, Cilt. 31, No. 7, s. 1414-1424.
  • [26] Benavent-Climent, A., Cahis, X., Vico, J.M. 2010. Interior Wide BeamColumn Connections in Existing RC Frames Subjected to Lateral Earthquake Loading, Bulletin of Earthquake Engineering, Cilt. 8, No. 2, s. 401-420.
  • [27] Li, B., Kulkarni, S.A. 2010. Seismic Behavior of Reinforced Concrete Exterior Wide Beam-Column Joints, Journal of Structural Engineering, Cilt. 136, No. 1, s. 26-36.
  • [28] Luk, S.H., Kuang, J.S. 2012. Seismic Behaviour of RC Exterior Wide Beam-Column Joints, 15th World Conference on Earthquake Engineering, Cilt XIV, Lisbon, s. 10987-10996.
  • [29] Bayındırlık ve İskân Bakanlığı. 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik (DBYBHY-2007), Ankara.
  • [30] Türk Standartları Enstitüsü. 2000. Betonarme Yapıların Tasarım ve Yapım Kuralları (TS-500), Ankara.
  • [31] Sta Bilgisayar Mühendislik ve Müşavirlik Ltd. Şti., STA4-CAD v13.1, Betonarme ve Çelik Bina Tasarım Yazılımı, İstanbul.
  • [32] Computers and Structures Inc., SAP2000 v15.2.1, Structural Analysis Program, Berkeley, California.
  • [33] Imbsen Software Systems, XTRACT v3.0.8, Cross Section Analysis Program for Structural Engineers, California.
  • [34] Akyıldız, A.T. 2015. Mevcut Bir Betonarme Binanın TDY'07'de Belirtilen Doğrusal Elastik Olmayan Analiz Yöntemlerine Göre Performans Değerlendirmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 211s, İstanbul.
  • [35] Pacific Earthquake Engineering Research Center (PEER) Strong Motion Database.http://ngawest2.berkeley.edu/, (Erişim Tarihi: 03.05.2015).
  • [36] Center for Engineering Strong Motion Data (CESMD), StrongMotion Data Set Archieves. http://www.strongmotioncenter.or g/cgi-bin/CESMD/archive.pl, (Erişim Tarihi: 03.05.2015).
  • [37] Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Deprem Dairesi Başkanlığı. http://kyhdata.deprem.gov.tr/2K/k yhdata_v4.php, (Erişim Tarihi: 05.05.2015).
  • [38] Seismosoft Ltd., SeismoMatch v2.1.0, An Application for Adjusting Earthquake Accelerograms, Pavia.
  • [39] Leng, K., Chintanapakdee, C., Hayashikawa, T. 2014. Seismic Shear Forces in Shear Walls of a Medium-Rise Building Designed By Response Spectrum Analysis, Engineering Journal, Cilt. 18, No. 4, s. 73-95.
  • [40] Munir, A., Warnitchai, P. 2012. The Cause of Unproportionately Large Higher Mode Contributions in the Inelastic Seismic Responses of HighRise Core-Wall Buildings, Earthquake Engineering and Structural Dynamics, Cilt. 41, No. 15, s. 2195-2214.
  • [41] Pugh, J.S., Lowes, L.N., Lehman, D.E. 2014. Seismic Design of Slender Concrete Walls, Proceedings of the 10th US National Conference on Earthquake Engineering, Anchorage, Alaska, Earthquake Engineering Research Institute, s. 3267-3277.
  • [42] American Concrete Institute. 2011. Building Code Requirements for Structural Concrete (ACI 318-11), Farmington Hills, MI.
  • [43] American Society of Civil Engineers. 2007. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10), Reston, Virginia.
  • [44] Rutenberg, A., Nsieri, E. 2006. The Seismic Shear Demand in Ductile Cantilever Wall Systems and the EC8 Provisions, Bulletin of Earthquake Engineering, Cilt. 4, No. 1, s. 1-21.
  • [45] European Committee for Standardization (CEN). 2004. Eurocode (EC) 8: 'Design of Structures for Earthquake Resistance - Part 1 General Rules, Seismic Actions and Rules for Buildings' (EN 1998-1), Brussels.
  • [46] New Zealand Standards Association. 1995. NZS 3101 Code of Practice for the Design of Concrete Structures (Parts 1 & 2), Wellington.
  • [47] Kazaz, İ., Gülkan, P. 2013. Perde- Çerçeve Sistemlerde Kesme Kuvveti Dinamik Büyütme Katsayısı, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Hatay, p.128.
  • [48] Salonikios, T.N., Kappos, A.J., Tegos, I.A., Penelis, G.G. 2000. Cyclic Load Behavior of Low-Slenderness Reinforced Concrete Walls: Failure Modes, Strength and Deformation Analysis, and Design Implications, ACI Structural Journal, Cilt. 97, No. 1, s. 132-142.
  • [49] Sedgh, R.E., Dhakal, R.P., Carr, A.J. 2015. State of the Art: Challenges in Analytical Modelling of Multi-Storey Shear Wall Buildings, New Zealand Society for Earthquake Engineering Annual Conference (NZSEE2015), Rotorua, New Zealand, p.O-15.
  • [50] Kazaz, İ., Gülkan, P., Yakut, A. 2012. Performance Limits for Structural Walls: An Analytical Perspective, Engineering Structures, Cilt. 43, No. 1, s. 105-119.
  • [51] Constantin, R., Beyer, K. 2016. Behaviour of U-shaped RC Walls under Quasi-Static Cyclic Diagonal Loading, Engineering Structures, Cilt. 106, No. 1, s. 36-52.
  • [52] Beyer, K., Dazio, A., Priestley, M.J.N. 2011. Shear Deformations of Slender Reinforced Concrete Walls under Seismic Loading, ACI Structural Journal, Cilt. 108, No. 2, s. 167-177.
  • [53] Kalkan, E., Kunnath, S.K. 2007. Assessment of Current Nonlinear Static Procedures for Seismic Evaluation of Buildings, Engineering Structures, Cilt. 29, No. 3, s. 305-316.
  • [54] Krawinkler, H., Seneviratna, G.D.P.K. 1998. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation, Engineering Structures, Cilt. 20, No. 4-6, s. 452-464.
  • [55] Penelis, G.G., Kappos, A.J. 2002. 3D Pushover Analysis: The Issue of Torsion, 12th European Conference on Earthquake Engineering, London, p.015.
  • [56] Aydınoğlu, M.N. 2003. An Incremental Response Spectrum Analysis Procedure Based on Inelastic Spectral Displacements for Multi-Mode Seismic Performance Evaluation, Bulletin of Earthquake Engineering, Cilt. 1, No. 1, s. 3-36.
  • [57] Chopra, A.K., Goel, R.K. 2004. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Unsymmetric-Plan Buildings, Earthquake Engineering and Structural Dynamics, Cilt. 33, No. 8, s. 903-927.
  • [58] Fajfar, P., Marusic, D., Perus, I. 2005. Torsional Effects in the PushoverBased Seismic Analysis of Buildings, Journal of Earthquake Engineering, Cilt. 9, No. 6, s. 831-854.
  • [59] Baros, D.K., Anagnostopoulos, SA. 2008. An Overview of Pushover Procedures for the Analysis of Buildings Susceptible to Torsional Behavior, The 14th World Conference on Earthquake Engineering, Beijing, p.01-0195.
  • [60] Erduran, E. 2008. Assessment of Current Nonlinear Static Procedures on the Estimation of Torsional Effects in Low-Rise Frame Buildings, Engineering Structures, Cilt. 30, No. 9, s. 2548-2558.
  • [61] Erduran, E., Ryan, K.L. 2011. Effects of Torsion on the Behavior of Peripheral Steel-Braced Frame Systems, Earthquake Engineering and Structural Dynamics, Cilt. 40, No. 5, s. 491-507.
  • [62] Aka, İ. 2015. Kentsel Dönüşüm ve Asmolen Döşeme, İMO İstanbul Bülten, Sayı 132, s. 12-14.
  • [63] Dönmez, C. 2013. Türkiye'deki Asmolen Yapıların Deprem Yeterliliği Konusunda Bir İrdeleme, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Hatay, p.013.
  • [64] Apostolska, R.P., NecevskaCvetanovska, G.S., Cvetanovska, J.P., Mircic, N. 2008. Seismic Performance of Flat-Slab Building Structural Systems, The 14th World Conference on Earthquake Engineering, Beijing, p.01-0435.
  • [65] Lelekakis, G.E., Birda, A.T., Mitoulis, S.A., Chrysanidis, T.A., Tegos, I.A. 2008. Applications of Flat Slab R/C Structures in Seismic Regions, Fifth European Workshop on the Seismic Behaviour of Irregular and Complex Structures, Catania, s. 99-113.
  • [66] Değer, Z.T., Yang, T.Y., Wallace, J.W., Moehle, J. 2015. Seismic Performance of Reinforced Concrete Core Wall Buildings With and Without Moment Resisting Frames, The Structural Design of Tall and Special Buildings, Cilt. 24, No. 7, s. 477-490.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi