Investigation of Microstructure And Mechanical Properties of SrBr2-doped Calcium Phosphate Materials Produced by Sol-Gel Method

In this study, calcium phosphate based SrBr2-doped synthesized materials were produced by sol gel method. The effects of SrBr2 compound on the morphological structure and mechanical properties of the produced synthesis materials were investigated. For these purposes, the morphological effects of synthesis materials were examined by FTIR, XRD and SEM-EDX analyzes and their mechanical properties were investigated by hardness and compression tests. As a result of FTIR and XRD investigations on all synthesized materials, it was observed that the additive materials decreased the crystallinity and formed the HA (Hydroxyapatite), β-TCP (Beta tricalcium phosphate), Ca3(Si3O9), Ca2H4O9P2 phase structures. In addition, as a result of the SEM-EDX and mechanical tests, it has been determined that different sizes of grain structure in all synthesized materials are formed and SrBr2 additive increase the compressive strength and hardness values.

Sol-jel Yöntemi İle Üretilen SrBr2 Katkılı Kalsiyum Fosfat Malzemelerin Mikroyapı ve Mekanik Özelliklerinin İncelenmesi

Bu çalışmada, kalsiyum fosfat esaslı SrBr2 katkılı sentez malzemeleri sol jel yöntemi ile üretilmiştir. Üretilen malzemelerin morfolojik yapısı ve mekanik özellikleri üzerine SrBr2 bileşiğinin etkileri incelenmiştir. Bu amaçlar doğrultusunda, biyogreftlerin morfolojik etkileri FTIR, XRD ve SEM-EDX analizleri ile incelenirken, mekanik özellikleri de sertlik ve basma testleri yapılarak araştırılmıştır. Bütün sentez malzemelerinin üzerine yapılan FTIR ve XRD incelemeleri sonucu, biyogreftler de katkı malzemelerinin kristaliteyi düşürdüğü ve HA(Hidroksiapatit), β-TCP (Beta trikalsiyum fosfat), Ca3(Si3O9), Ca2H4O9P2 faz yapılarını oluşturduğu gözlenmiştir. Ayrıca yapılan SEM-EDX ve mekanik testler sonucu da, bütün sentez malzemelerinde farklı boyutlarda tane yapısının oluştuğu ve SrBr2 katkı malzemelesinin basma mukavemeti ve sertlik değerlerini yükselttiği belirlenmiştir.

___

Liang, W., Rahaman, M. N., Day, D. E., Marion, N. W., Riley G. C., Mao J. J., 2008. Bioactive borate glass scaffold for bone tissue engineering, J. Non-Cryst. Solids, Volume. 354, p.1690–1696.

Mariappan, C.R., Yunos, D. M., Boccaccini, A. R., Roling, B., 2009. Bioactivity of electro-thermally poled bioactive silicate glass, Acta Biomater., Volume. 5 [4], p.1274–1283.

Ouis, M. A., Abdelghany, A. M., Elbatal, H. A., 2012. Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass, Processing and Application of Ceramics, Volume. 6 [3], p.141–149.

Jha, P. and Singh, K., 2016. Effect of MgO on bioactivity, hardness, structural and optical properties of SiO2– K2O–CaO–MgO glasses. Ceramics International, 42(1), p.436-444.

Esmati, N., Khodaei, T., Salahinejad, E. and Sharifi, E., 2018. Fluoride doping into SiO2-MgO-CaO bioactive glass nanoparticles: bioactivity, biodegradation and biocompatibility assessments. Ceramics International, Volume 44(14), p.17506-17513.

Arabyazdi, S., Yazdanpanah, A., Hamedani, A.A., Ramedani, A. and Moztarzadeh, F., 2019. Synthesis and characterization of CaO-P2O5-SiO2-Li2O-Fe2O3 bioactive glasses: The effect of Li2O-Fe2O3 content on the structure and in-vitro bioactivity. Journal of Non-Crystalline Solids, Volume 503, p.139-150.

Ma, J., Huang, B.X., Zhao, X.C., Wang, C.Z. and Zhang, H.M., 2017. Effect of zinc substitution for calcium on the structure, dissolution behavior and apatite formation of CaO–ZnO–SiO2–P2O5 bioceramics. Materials Letters, Volume 206, p.154-157.

Ke, D., Tarafder, S., Vahabzadeh, S. and Bose, S., 2019. Effects of MgO, ZnO, SrO, and SiO2 in tricalcium phosphate scaffolds on in vitro gene expression and in vivo osteogenesis. Materials Science and Engineering: C, Volume 96, p.10-19.

Hench, L.L., 1991. Bioceramics: From Concept to Clinic, J. Am. Ceram. Soc., Volume. 74, p.1487–1510.

Deaza, P. N., Guitian, F., Deaza, S., 1994. Bioactivity of Wollastonite Ceramics: In Vitro Evaluation, Scr. Metall. Mater., Volume. 31, p. 1001–1005.

Lin, K. L., Zhai, W. Y., Ni, S. Y., Chang, J., Zeng, Y., Qian, W. J., 2005. Study of the Mechanical Property and in vitro Biocompatibility of CaSiO3 Ceramics, Ceram. Int., Volume. 31, p. 323–326.

Gou, Z. R., Chang, J., Zhai, W. Y., 2005. Preparation and Characterization of Novel Bioactive Dicalcium Silicate Ceramics, J. Eur. Ceram. Soc., Volume. 25, p. 1507–1514.

Wu, C. T., Chang, J., Wang, J. Y., Ni, S. Y., Zhai, W. Y., 2005. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic, Biomaterials, Volume. 26, p.925–2931.

Wu, C. T., Chang, J., 2006. A novel akermanite bioceramic: preparation and characteristics, J. Biomater. Appl., Volume. 21, p.119–129.

Choudhary, R., Koppala, S., Swamiappan, S., 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis, Journal of Asian Ceramic Societies, Volume. 3-2, p.173-177.

Liu, C. C., Yeh, J. K., Aloia, J. F., 1988. Magnesium directly stimulates osteoblast proliferation, J. Bone Miner. Res., Volume. 3, p. 104.

Carlisle, E. M., 1980. Biochemical and morphological changes associated with long bone abnormalities in silicon deficiency, J. Nutr., Volume. 110, p. 1046- 1055.

Wu, C., Chang, J., 2007. Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics, J. Biomed. Mater. Res. Part B, p.153-160.

Marie, P. J., Ammann, P., Boivin, G., Rey, C., 2001. Mechanisms of action and therapeutic potential of strontium in bone, Calcif. Tissue Int., Volume. 69, 121–129.

Meunier, P.J., Roux, C., Seeman, E., Ortolani, S., Badurski, J. E., Spector, T. D., et al., 2004. The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis, N. Engl. J. Med., Volume. 350, p. 459–468.

Fardellone, P., et al. 2005. Strontium ranelate reduces the risk of vertebral fractures in osteoporotic postmenopausal women whatever the baseline vertebral fracture status, Bone, Volume. 36, p. 403.

Reginster, J. Y., et al., 2005. Strontium ranelate reduces the risk of nonvertebral fractures in postmenopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) study, The journal of clinical endocrinology & metabolism, Volume. 90 [5], p. 2816-2822.

Chengtie, W., et al., 2007. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties, Biomaterials, Volume. 28 [21], 3171-3181.



Zhang, M., et al., 2010. Synthesis, in vitro hydroxyapatite forming ability, and cytocompatibility of strontium silicate powders, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Volume. 93[1], p.252-257.

Gentleman, E., et al., 2010. The effects of strontiumsubstituted bioactive glasses on osteoblasts and osteoclasts in vitro, Biomaterials, Volume. 31[14], p.3949-3956.

Park, J., Lakes, S.R., 1992. Biomaterials: An Introduction, Plenum Press, New York, p. 235.

Lopes M.A., Santos J.D., Monteiro F.J., Knowles J.C., 1998. Glass-reinforced hydroxyapatite: a comprehensive study of the effect of glass composition on the crystallography of the composite. J Biomed. Mater. Res., Volume 39, p. 244-251.

Knowles J.C., 1993. Ceramic Industry Division Annual Convention. Brunel University, p. 20-23.

Sylvester P.W., Birkenfeld H.P., Hosick H.L., Briski K.P., 1994. Fatty acid modulation of epidermal growth factor-induced mouse mammary epithelial cell proliferation in vitro. Exp Cell Res., Volume 214, p. 145-153.

Legeros R.Z., 1991. Calcium phosphates in oral biology and medicine. Monograph in Oral Sci., Volume 15, p. 1-201.

Nita S., Michel A., 2005. Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials, Volume 26, p. 5763–5770.

Hamisah I., Roslinda S., Hamid MuhammadA.A., 2016. Effect of autoclaving and sintering on the formation of β-wollastonite. Mater. Sci. Eng. C, Volume 58, p.1077–1081.

Paital, S.R. and Dahotre, N.B., 2009. Calcium phosphate coatings for bio-implant applications: materials, performance factors, and methodologies. Materials Science and Engineering: R: Reports, Volume 66(1-3), pp.1-70.

Saiz, E., Goldman, M., Gomez-Vega, J.M., Tomsia, A.P., Marshall, G.W. and Marshall, S.J., 2002. In vitro behavior of silicate glass coatings on Ti6Al4V. Biomaterials, Volume 23(17), pp.3749-3756.

Montenero, A., Gnappi, G., Ferrari, F., Cesari, M., Salvioli, E., Mattogno, L., Kaciulis, S. and Fini, M., 2000. Sol-gel derived hydroxyapatite coatings on titanium substrate. Journal of Materials science, Volume 35(11), pp.2791-2797.

Lakshmi, R., Velmurugan, V. and Sasikumar, S., 2013. Preparation and phase evolution of Wollastonite by sol-gel combustion method using sucrose as the fuel. Combustion Science and Technology, Volume 185(12), pp.1777-1785.

Martinez, I. M., Velasquez, P. A., Meseguer-Olmo, L., De Aza, P. N., 2011. Production and study of in vitro behaviour of monolithic α-Tricalcium Phosphate based ceramics in the system Ca3(PO4)2–Ca2SiO4, Ceram. Int., Volume. 37, p.2527–2535.

Zuleta, F., Murciano, A., Gehrke, S. A., E.Maté-Sánchez de Val, J., Calvo-Guirado, J. L., De Aza, P. N., 2017. A New Biphasic Dicalcium Silicate Bone Cement Implant, Materials, Volume. 10[7], p.758.

Choudhary, R., Koppala, S., Swamiaappan, S., 2015. Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis, Journal of Asian Ceramic Societies, Volume. 3, p.173-177.

Ayala, A., Fetter, G., Palomares, E., Bosch, P., 2011. CuNi/Al hydrotalcites synthesized in presence of microwave irradiation, Mater. Lett., Volume. 65, p.1663–1665.

Abdelkader, N. B. H., Bentouami, A., Derriche, Z., Bettahar, N., De Menorval, L. C., 2011. Synthesis and characterization of Mg–Fe layer double hydroxides and its application on adsorption of Orange G from aqueous solution, Chem. Eng. J., Volume. 169, p. 231– 238.

Park, J. B., 1979. Biomaterials An Introduction, 46- 75p., New York.

Demirel, M., Aksakal, B., Kaya, A.I., 2017. The effect and characterization of newly synthesized SrBr2 reinforced bone grafts on structure and cell viability, Journal of Sol-Gel Science and Technology, Volume. 82[2], p. 602-610.

Liu, X., Rahaman, M. N., Hilmas, G. E., Bal, B.S., 2013. Mechanical properties of bioactive glass (13-93) scaffolds fabricated by robotic deposition for structural bone repair, Acta biomaterialia, Volume. 9[6], p. 7025-7034.

Fu, Q., Saiz, E., Rahaman, M. N., Tomsia, A. P., 2011. Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives, Mater. Sci. Eng. C, Volume. 31, p. 1245–56.

Lewandrowski, K.U., Wise, D. L., Yaszemski, M.J., Gresser, J. D., Trantolo, D. J., Altobelli, D. E., 2002. Tissue engineering and biodegradable equivalents, scientific and clinical applications, Marcel Dekker Inc., New York, NY.

Brown, W.E., 1987. A new calcium phosphate, watersetting cement. Cements research progress, pp.351- 379.

Chow, L.C., 1991. Self-setting calcium phosphate cements. In Mat Res Soc Symp Proc. Volume 179, pp. 3-24.

Fukase, Y., Eanes, E.D., Takagp, S., Chow, L.C. and Brown, W.E., 1990. Setting reactions and compressive strengths of calcium phosphate cements. Journal of dental research, Volume 69[12], pp.1852-1856.

Takezawa, Y., Doi, Y., Shibata, S., Wakamatsu, N., Kamemizu, H., Goto, T., Iijima, M., Moriwaki, Y., Uno, K., Kubo, F. and Haeuchi, Y., 1987. Self-setting apatite cement. II. Hydroxyapatite as setting accelerator. J. Jpn. Soc. Dent. Mat, Volume 6, pp.426-431.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi
Sayıdaki Diğer Makaleler

Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu

Lütfiye ALTAY, Metehan ATAGÜR, Müslüm ERBEKTAŞ, Mehmet SARIKANAT

Örgülü Cam Elyaf Takviyeli Polimer Kompozitlerin Tabaka Diziliminin ve Genişliklerinin SERR Üzerindeki Etkileri

M.evren TOYGAR, Farshid KHOSRAVİ MALEKİ

Grafit Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu

LÜTFİYE ALTAY, METEHAN ATAGÜR, Müslüm ERBEKTAŞ, MEHMET SARIKANAT

Erken Yaşta Önyüklemenin Betonun Mekanik Özellikleri ve Geçirimliliğine Etkisi

Furkan KUNDUZCU, Oktay DUTAR, Murat TUYAN, Kambiz RAMYAR

Cystoseira barbata İle Toryum Biyosorpsiyonu

YELİZ ÖZÜDOĞRU

Polimer-Viskoelastik Malzemeli Boru Hatlarındaki Eğilme Dalgalarının Dispersiyonu

Tarık KOÇAL

Investigation of Microstructure And Mechanical Properties of SrBr2-doped Calcium Phosphate Materials Produced by Sol-Gel Method

MEHTAP DEMİREL, DİLEK ÇANAKÇI

Genelleştirilmiş Rayleigh Dalgaların Viskoelastik Tabakalı Yarı-uzay Ortamlarda Sönümlenmesi

Masoud NEGIN

Farklı Profillere Sahip Kirişlerde Meydana Gelen Eğilme Gerilmesi ve Sehim Miktarının Teorik ve Nümerik Yöntemler ile Analizi

SALİH KORUCU, KADİR GÖK, Mert TÜMSEK, GÜRKAN SOY, ARİF GÖK

Konfeksiyon İşletmelerinde En Uygun Fason Seçimi Problemine MACBETH ve TOPSIS Yöntemlerinin Uygulanması

Deniz Karataş CEVİZCİ, Ozan KAYACAN