İlaç Formülasyonundaki Asetilsalisilik Asit, Parasetamol ve Kafeinin Kemometrik Metotlarla Tayini

Bu çalışmada,  tablet ilaç numunesinde bulunan parasetamol, asetilsalisilik asit ve kafein etken maddelerinin ultraviyole spektrofotometrisi yöntemi ile elde edilen sonuçlarının kemometrik metotlarla birlikte değerlendirilmesi ile tayini gerçekleştirilmiştir. Deneysel çalışmada maddelerin tek tek saf haldeki spektrumları elde edildikten sonra her bir ilaç etken maddesinden alınarak sentetik karışım hazırlanmıştır. Bir sonraki aşamada tablet numunesi analizi yapılmıştır. Kemometrik yöntemlerden, temel bileşen regresyonu yöntemi (PCR) ve kısmi en küçük kareler yöntemi (PLS), sentetik karışım ve tablet numunesindeki miktar tayininde başarı ile uygulanmıştır. Elde edilen veriler, istatistik olarak incelendiklerinde hem hesaplanan geri kazanım değerleri yüksek hem de standart sapmalar yeterince küçüktür. Ayrıca yöntemin uygunluğu açısından F-testi uygulanmış ve sonuçlar uyumlu bulunmuştur. Uygulanan kemometrik yöntemler yardımıyla elde edilen sonuçlar son derece hızlı, basit ve güvenilir sonuçlardır.

Determination of Acetylsalicylic Acid, Paracetamol and Caffeine in Drug Formulation with Chemometric Methods

In this study, the results of ultraviolet spectrophotometry of paracetamol, acetylsalicylic acid and caffeine active substances in tablet drug sample were evaluated together with chemometric methods. In the experimental study, the synthetic mixtures were prepared by taking each drug from the active ingredient after obtaining the individual pure spectra of the substances. At the next stage, a tablet sample analysis was performed. From the chemometric methods, the principle component regression method (PCR) and the partial least squares method (PLS) have been successfully applied in the quantification of the synthetic mixtures and the tablet sample. When the data obtained are statistically analyzed, both the calculated recovery values ​​are high and the standard deviations are small enough. In addition, F-test was applied in terms of the suitability of the method and the results were found to be compatible. The results obtained with the help of applied chemometric methods are very fast, simple and reliable results.

___

  • [1] Issa, Y.M., Zayed, S.I.M., Habib, I.H.I. 2011. Simultaneous determination of ibuprofen and paracetamol using derivatives of the ratio spectra method, Arabian Journal Of Chemistry, 4(3), s. 259-263.
  • [2] Khoshayand, M.R., Abdollahi, H., Shariatpanahi, M., Saadatfard, A., Mohammadi, A. 2008. Simultaneous spectrophotometric determination of paracetamol, ibuprofen and caffeine in pharmaceuticals by chemometric methods, Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,70(3), s. 491-499,
  • [3] Dinç, E. 2003. Linear regression analysis and its application to the multivariate spectral calibrations fort he multiresolution of a ternary mixture of caffeine, paracetamol and metamizol in tablets, Journal of pharmaceutical and biomedical analysis, 33, s. 605-615.
  • [4] Glavanovic, S., Glavanovic, M., Tomisic V. 2016. Simultaneous quantitative determination of paracetamol and tramadol in tablet formulation using UV spectrophotometry and chemometric methods, Spectrochimica Acta PartA:Molecular and Biomolecular Spectroscopy,157, s. 258-264.
  • [5] Hajian R., Afshari N. 2012. The spectrophotometric multicomponent analysis of a ternary mixture of ibuprofen, caffeine and paracetamol bu the combination of double divisor-ratio spectra derivative and H-point standard addition method, E-journal of chemistry, 9(3), s. 1153-1164.
  • [6] Saraan S.M.D., Sinaga S.M., Muchlisyam 2015. Development method for the determination of ternary mixture of paracetamol, ibuprofen and caffeine in tablet dosage form using zero-crossing derivative spectrophotometric, International journal of pharmtach research, 7(2), 349-353, s. 2014-2015.
  • [7] Wedian F. 2016. Bivariate analysis for the determination of paracetamol and caffeine in drug formulations, Jordan journal of chemistry, 11(4), s. 217-225.
  • [8] Muntean D.M., Alecu C., Tomuta I. 2017. Simultaneous quantification of paracetamol and caffeine in powder blends for tableting by NIR-Chemometry, Journal of spectroscopy, s. 1-8.
  • [9] Prado T.M., Cincotto F.H., Machado S.A.S. 2017. Spectroelectrochemical study of acetylsalicylic acid in neutral medium and its quantification in clinical and environmental samples, Electrochimica Acta,233, s. 105-112.
  • [10] Shervani Z., Ikushima Y. 2001. Hydrolysis of acetylsalicylic acid in AOT/near-critical propane microemılsion:A model hydrolysis reaction in high pressure microemulsion as investigated by in situ UV-vis spectroscopy, The American Chemical Society, 222, U332.
  • [11] Neuberger S., Jooss K., Flottmann D. 2017. Raman spectroscopy and capillary zone electrophoresis for the analysis of degradation processes in commercial effervescent tablets containing acetylsalicylic acid and ascorbic acid, Journal of pharmaceutical and biomedical analysis, 134, s. 122-129.
  • [12] Panahi H.A., Rahimi A., Moniri E., Izadi A., Parvin M.M. 2010. HPTLC separation and quantitative analysis of aspirin, salicylic acid and sulfosalicyclic acid, Journal of planar chromatography-modern TLC, 23(2), s. 137-140.
  • [13] Novikova A., Carstensen J.M., Rades T., Leopold C.S. 2017. UV imaging of multiple unit pellet system (MUPS) tablets: a case study of acetylsalicylic acid stability, European journal of pharmaceutics and biopharmaceutics, 119, s. 447-453.
  • [14] Souri E., Nasab S.A.M., Amanlou M., Tehrani M.B. 2015. Development and validation of a rapid derivative spectrophotometric method for simultaneous determination of acetaminophen, ibuprofen and caffeine, Journal of analytical chemistry, 70(3), s. 333-338.
  • [15] Aktaş A.H., Pekcan H. 2013. Chemometric methods for the simultaneous spectrophotometric determination of caffeine, theobromine and theophylline in tea, Asian journal of chemistry, 25(15), s. 8333-8338.
  • [16] Dinç E., Baleanu D., Onur F. 2001. Spectrophotometric multicomponent analysis of a mixture of metamizol, acetaminophen and caffeine in pharmaceutical formulations by two chemometric tchniques, Journal of pharmaceutical and biomedical analysis, 26, s. 949-957.
  • [17] Pereira V.P., Knor F.J., Vellosa J.C.R., Beltrame F.L. 2014. Determination of phenolic compounds and antioxidant activity of green, black and white teas of Camellia sinensis (L.) Kuntze, Theaceae, Campinas, 16(3), s. 490-498.
  • [18] Srdjenovic B., Djordjevic-Milic V., Grujic N., Injac R., Lepojevic Z. 2008. Journal of chromatographic science, 46, s. 144-149.
  • [19] Shehata A.B., Rizk M.S., Rend E.A. 2016, Journal of food and drug analysis, 24, s. 703-715.
  • [20] Frizzarin R.M., Maya F., Estela J.M., Cerda V. 2016. Fully-automated in-syringe dispersive liquid-liquid microextraction for the determination of caffeine in coffee beverages, Food chemistry, 212, s. 759-767.
  • [21] Dinç E., Baleanu D. 2002. Spectrophotometric quantitative determination of cilazapril and hydrochlorothiazide in tablets by chemometric methods, Journal of pharmaceutical and biomedical analysis, 30, s. 715-723.
  • [22] Dinç E.,Özdemir A., Baleanu D. 2005. Comparative study of the continuous wavelet transform, derivative and partial least squares methods applied to the overlapping spectra for the simultaneous quantitative resolution of ascorbic acid and acetylsalicylic acid in effervescent tablets, Journal of pharmaceutical and biomedical analysis, 37(3), s. 569-575.
  • [23] Uyanık A. 2008. Analitik Kimyacılar için İstatistik ve Kemometri, 5. Baskı, s. 254-259.
  • [24] Dinç,E. 2009. Kemometrik İşlem ve Yöntemlerin Analitik Kimyadaki Tipik Uygulamaları, Kemometri Yaz Okulu Notları, s. 13-17.
  • [25] Kaba, A., Aktaş A.H. 2014. Çeşitli Ligandları Kullanarak Fe3+, Al3+ ve Cu2+ nin Bir Arada Spektrofotometrik Tayinleri İçin Yöntem Geliştirilmesi ve Elde Edilen Verilerin En Küçük Kareler Kalibrasyon Yöntemi (PLS) ve Temel Bileşen Regresyon (PCR) Yöntemi ile Değerlendirilmesi, SAUFBE, Cilt 18, Sayı 1, s. 71-79.
  • [26] Aktaş AH, Mutlutürk B. 2014. Demir ve Alüminyumun Doğal Sularda UV Spektrofotometrik Tayini için Yöntem Geliştirilmesi ve Elde Edilen Verilerin Kemometrik Kalibrasyon Yöntemleriyle Değerlendirilmesi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 18(3), s.52-59.
  • [27]Minitab 17 Statistical Programme: http://www.inovadanismanlik.com.tr (30.11.2017)
  • [28] Ershov, B.G., Panich, N.M. 2018. Chemical and Spectral Behavior of Nitric Acid in Aqueous Sulfuric Acid Solutions: Absorption Spectrum and Molar Absorption Coefficient of Nitronium Ion, Spectrochimica Acta Part A, Molecular And Biomolecular Spectroscopy, vol.188, s. 179-182.
  • [29] Eissler, S., Kley, M., Bachle, D., Loidl, G., Meier, T., Samson, D. 2017. Substitution Determination of Fmoc-Substituted Resins at Different Wavelengths, Journal of Peptide Science, vol.23, s. 757-762.
  • [30] Miao, J., Forget, B., Smith, K. 2018. Predicting Correlation Coefficients for Monte Carlo Eigenvalue Simulations With Multitype Branching Process, Annals of Nuclear Energy, vol.112, s. 307-321.
  • [31] Saganowska, P., Wesolowski, M. 2017. Principal Component and Cluster Analyses as Supporting Tools for Co-Crystals Detection”, J.Therm.Anal.Calorim., vol.130, s. 45-55.
  • [32] Porfire, A., Muntean, D., Achim, M., Vlase, L., Tomuta, I. 2015. Simultaneous Quantification of Simvastatin and Excipients in Liposomes Using Near Spectroscopy and Chemometry, Journal of Pharmaceutical and Biomedical Analysis, vol.107, s. 40-49.
  • [33] Tarhan, I., Kara, A.A.I.H. 2017. Quantitative Determination of Free Fatty Acids in Extra Virgin Olive Oils by Multivariate Methods and Fourier Transform Infrared Spectroscopy Considering Different Absorption Modes, International Journal of Food Properties, s. 1-8.