Hydrological Droughts and Runoff Trends of the Demirköprü Dam Reservoir Basin on Gediz River, Turkey

In recent years, the impacts of climate change on water resources are much more noticeable. In terms of sustainable management of water resources, it is important to identify drought occurrences in river basins and to identify drought trends. For this purpose, many drought indices have been developed in order to define the droughts quantitatively and Streamflow Drought Index (SDI) method is frequently used to determine the hydrological droughts among them. In this study, hydrological droughst of on Acısu, Selendi, Deliiniş, Demirci sub-basins and incoming total runoff to Demirköprü Dam reservoir on the Gediz River were analyzed in monthly, quarterly, six-month and annual timescales. The total inflows of Demirköprü Dam reseroir trends were investigated at same time scales.As a result of the study, it was determined that the all sub-basins runoff and incoming total runoff to Demirköprü Dam reservoir were affected from hydrological droughts for long periods and trends of incoming runoff to Demirköprü Dam reservoir were towards the dry periods.

Gediz Nehri Demirköprü Baraj Havzasının Hidrolojik Kuraklıkları ve Eğilimleri

Son yıllarda, iklim değişikliğinin su kaynakları üzerindeki etkileri çok daha belirgin bir biçimde ortaya çıkmaktadır. Su kaynaklarının sürdürülebilir yönetimi açısından, nehir havzalarındaki kuraklık olaylarını ve kuraklık eğilimlerini tanımlamak büyük önem taşımaktadır. Bu amaçla, kuraklıkları niceliksel olarak tanımlamak için birçok kuraklık endeksi geliştirilmiştir ve bilhassa hidrolojik kuraklıkları belirlemek amacıyla Streamflow Drought Index (SDI) yöntemi sıkça kullanılmaktadır. Bu çalışmada Gediz Nehri'ndeki Acısu, Selendi, Deliiniş, Demirci havzaları ve Demirköprü Baraj rezervuarındaki hidrolojik kuraklık ve eğilimleri aylık, üç aylık, altı aylık ve yıllık zaman ölçeklerinde incelenmiştir. Çalışma sonucunda, Demirköprü Barajı havzası girişlerinin uzun süre hidrolojik kuraklıklardan etkilendiği ve kuraklık analizlerinin kurak dönemleri işaret ettiği tespit edilmiştir.

___

[1] Oloruntade, A., J., Mohammea, T., A., Ghazali, A., H., Wayayok, A., 2018. Analysis of meteorological and hydrological droughts in the Niger-South Basin, Nigeria. Global and Planetary Change, 155, 225-233.

[2] Ortega-Gomez, T., Perez-Martin, M., Estrela, T., 2018. Improvement of the drought ,indicators system in the Jucar River Basin, Spain. Science of the Total Environment, 610-611, 276 – 290.

[3] Ma, F., Yuan, X., Ye, A., 2015. Seasonal drought predictability and forecast skill over China, J. Geophys. Res.-Atmos., 120, 8264–8275

[4] Wu, Z., Xu, H., Li, Y., Wen, L., L, J., Lu,. G., Li, X., 2018 Climate and drought risk regionalization in China based on probabilistic aridty and drought index. Science of the Total Environment, 612, 513-521.

[5] Estrela, T., Vargas, E., 2012. Drought managements plans in the European Union. The case of Spain (Eds). Water Resour. Manag. 26 (6):1537–1553.

[6] Nalbantis I. 2008. Evaluation of a hydrological drought index. Eur.Water 23: 67–77.

[7] Tsakiris G, Vangelis H., 2005. Establishing a drought index incorporating evapotranspiration. Water, 9/10:3-11.

[8] Tsakiris G, Pangalou D, Vangelis H. 2007b. Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manage;21:821– 33.

[9] Yang, J., Chang, J., Wang, Y., Li, Y., Hu, H., Chen, Y., Huang, Q., Yao, J. 2018. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. J.of Hydrology, 557, 651- 667.

[10] Monacelli G ., G alluccio M . C ., A bbafati M . 2 005. Drought Within The Context Of The Region V. Italian Agency for Environmental Protection and Technical Services (APAT), Hydrology and Inland Waters Service.

[11] Wu, Z., Xu, H., Li, Y., Wen, L., L, J., Lu,. G., Li, X., 2018. Climate and drought risk regionalisation in China based on probabilistic aridty and drought index. Science of the Total Environment, 612, 513-521.

[12] A Arabzadeh, R., Kholoosi, M. M., Bazrafshan, J., 2016. Regional hydrological drought monitoring using principal components analysis. Journal of Irrigation and Drainage Engineering, 142 (1), 04015029.

[13] Gümüş, V., Algin, H. M., 2017. Meteorological and hydrological drought analysis of the Seyhan-Ceyhan River Basin, Turkey. Meteorological Applications, 24, 62-73.

[14] Harmancioğlu, N. B., Fedra, K., Barbaros, F. 2008. Analysis for sustainability in management of water scare basins: the case of the Gediz River Basin in Turkey. Desalination, 226 (1-3), 175-182.

[15] Hirsch, R. M., Slack, J. R., Smith, R. A. 1982. Techniques of trend analysis for monthly water quality data, Water Resources Research, 187, 107- 121.

[16] Svendsen, M., Murray-Rust, D. H., Harmancioğlu, N., Alpaslan, N., 2005. Governing Closing Basins: the Case of the Gediz River in Turkey. Irrigation and River Basin Management: Options for Governance and Institutions, CABI Publishing, ch 11, M. Svendsen [ed.]. 193-213.

[17] Murray-Rust H., Alpaslan, N., Harmancioglu, N., Svendsen, M., 2003. Growth of water conflicts in the Gediz Basin, Turkey. (http://afeid.montpellier.cemagref.fr/Mpl2003/Con f/ MurrayRust.pdf) (Dec. 12, 2018).

[18] Gorguner, M., Kavvas, M. L., Ishida, K., 2019. Assessing the impacts of the future climate change on the hydroclimatology of The Gediz Basin in Turkey by using dynamically downscaled CMIP5 projections. Science of the Total Environment, 648, 481-499.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi