Helianthus Annuus Çekirdeği Kabuklarında Toryum Sorpsiyonunun Taguchi Metodu Kullanılarak İncelenmesi

Biyosorpsiyon, sulu çözeltilerden metallerin uzaklaştırılması için kullanılan çevre dostu, düşük maliyetli ve yüksek verime sahip bir yöntemdir. Helianthus annuus çekirdeği kabuklarında toryum biyosorpsiyonu batch yöntem ile, başlangıç toryum konsantrasyonu, temas süresi, pH ve sıcaklığın bir fonksiyonu olarak Taguchi deneysel tasarım metodu kullanılarak incelenmiştir. L9 ortogonal dizi matrisi ve “daha büyük daha iyi” modeli seçilerek gerçekleştirilen tasarım 9 deney gerektirmektedir. Her deneyin iki kez tekrarlanmasıyla elde edilen 18 deneme sonucu, S/N oranı ve ANOVA analizi gerçekleştirilmiştir. Yapılan analizlere göre optimum koşullar 100 mg.L-1başlangıç toryum konsantrasyonu, temas süresi 1 saat, pH 4 ve 35°C sıcaklık olarak belirlenmiş olup, optimum alım kapasitesi 39,86±096 mg.g-1’dır.

Investigation of Thorium Sorption on Helianthus Annuus Core Shell by using Taguchi Method

Biosorption is an environment-friendly, low-cost and high-efficiency method for removing metals from aqueous solutions. Thorium biosorption on Helianthus annuus core shells was examined in a batch method as a function of initial thorium concentration, contact time, pH and temperature by using Taguchi experimental design technique. The design performed by selecting the L9 orthogonal array matrix and the model of “larger is better” which requires 9 experiment. According to 18 experiment results that obtained by repeating each experiment twice, S/N ratio and ANOVA analysis were performed. The optimum conditions were determined as 100 mg.L-1 initial thorium concentration, contact time was 1 hour, pH 4 and 35°C temperature and optimum intake capacity was 39.86 ± 096 mg.g-1.

___

  • [1] Yang, S.K., Tan, N., Yan, X.M., Chen, F., Long, W., Lin, Y.C. 2013. Thorium(IV) removal from aqueous medium by citric acid treated mangrove endophytic fungus Fusarium sp. #ZZF51, Marine Pollution Bulletin, Cilt. 74, s. 213-219. DOI: 10.1016/j.marpolbul.2013.06.055.
  • [2] Soltani, N., Haddadi, H., Asgari, M., Rajabzadeh, N. 2015. Adsorptive stripping voltammetric detection of thorium on the multi-walled carbon nanotube modified screen printed electrode, Sensors and Actuators B, Cilt. 220, s. 1212-1216. DOI: 10.1016/j.snb.2015.06.106 0925-4005.
  • [3] DEB, A.K.S., Mohanty, B.N., Ilaiyaraja, P., Sivasubramanian, K., Venkatraman, B. 2013. Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes, Journal of Radioanalytical and Nuclear Chemistry, Cilt. 295, s. 1161-1169. DOI: 10.1007/s10967-012-1899-3.
  • [4] Varala, S., Kumari, A., Dharanija, B., Bhargava, S.K., Parthasarathy, R., Satyavathi, B. 2016. Removal of thorium (IV) from aqueous solutions by deoiled karanja seed cake: Optimization using Taguchi method, equilibrium, kinetic and thermodynamic studies, Journal of Environmental Chemical Engineering, Cilt. 4, s. 405-417. DOI: 10.1016/j.jece.2015.11.035 2213-3437.
  • [5] Karimi, M., Milani, S.A., Abolgashemi, H. 2016. Kinetic and isotherm analyses for thorium (IV) adsorptive removal from aqueous solutions by modified magnetite nanoparticle using response surface methodology (RSM), Journal of Nuclear Materials, Cilt. 479, s. 174-183. DOI: 10.1016/j.jnucmat.2016.07.020 0022-3115.
  • [6] Kütahyalı C., Sert Ş., Çetinkaya B., Yalçıntaş E., Acar M.B. 2012. Biosorption of Ce(III) onto modified Pinus brutia leaf powder using central composite design, Wood Science and Technology, Cilt. 46, s. 721-736. DOI: 10.1007/s00226-011-0437-8.
  • [7] Anagnostopoulos, V.A., Koutsoukos, P.G., Symeopoulos, B.D. 2015. Removal of U(VI) from Aquatic Systems, Using Winery By-Products as Biosorbents: Equilibrium, Kinetic, and Speciation Studies, Water Air Soil Pollution, Cilt. 226, s. 107. DOI: 10.1007/s11270-015-2379-5.
  • [8] Khamseh, A.Gh., Ghorbanian, S.A. 2018. Experimental and modeling investigation of thorium biosorption by orange peel in a continuous fixed-bed column, Journal of Radioanalytical and Nuclear Chemistry, Cilt. 317, s. 871-879. DOI: 10.1007/s10967-018-5954-6.
  • [9] Huang, Y., Hu, Y., Chen, L., Yang, T., Huang, H., Shi, R., Lu, P., Zhong, C. 2018. Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf, PLoS ONE 13(3): e0193659. https://doi.org/10.1371/ journal.pone.0193659.
  • [10] Bhainsa, K.C., D’Souza, S.F. 2009. Thorium biosorption by Aspergillus fumigatus, a filamentous fungal biomass, Journal of Hazardous Materials, Cilt. 165, s. 670-676. DOI: 10.1016/j.jhazmat.2008.10.033.
  • [11] Zuykov, M., Pelletier, E., Saint-Louis, R., Checa, A., Demers, S. 2012. Biosorption of thorium on the external shell surface of bivalve mollusks: The role of shell surface microtopography, Chemosphere, Cilt. 86, s. 680-683. DOI: 10.1016/j.chemosphere.2011.11.023.
  • [12] Jain, M., Garg, V.K., Kadirvelu, K. 2009. Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste, Journal of Hazardous Materials, Cilt. 162, s. 365-372. DOI: 10.1016/j.jhazmat.2008.05.048.
  • [13] Jain, M., Garg, V.K., Kadirvelu, Sillanpää, M. 2016. Adsorption of heavy metals from multi-metal aqueous solution by sunflower plant biomass-based carbons, International Journal of Environmental Science and Technology, Cilt. 13, s. 493-500. DOI: 10.1007/s13762-015-0855-5.
  • [14] Madan, S.S., Wasewar, K.L. 2017. Optimization for benzeneacetic acid removal from aqueous solution using CaO2 nanoparticles based on Taguchi method, Journal of Applied Research and Technology, Cilt. 15, s. 332-339. DOI: 10.1016/j.jart.2017.02.007.
  • [15] Santra, D., Joarder, R., Sarkar, M. 2014. Taguchi design and equilibrium modeling for fluoride adsorption oncerium loaded cellulose nanocomposite bead, Carbohydrate Polymers, Cilt. 111, s. 813-821. DOI: 10.1016/j.carbpol.2014.05.040.
  • [16] Googerdchian, F., Moheb, A., Emadi, R., Asgari, M. 2018. Optimization ofPb(II)ions adsorption on nanohydroxyapatite adsorbents by applying Taguchi method, Journal of Hazardous Materials, Cilt. 349, s. 186-194. DOI: 10.1016/j.jhazmat.2018.01.056.
  • [17] Aslani M.A.A., Erentürk S., Eral M., 2001. Thorium (IV) sorption on ignited Sarcotragus muscarum its kinetic and thermodynamic parameters, Journal of Radioanalytical and Nuclear Chemistry, Cilt. 250, s. 153-157. DOI: 10.1023/A:1013203618134.
  • [18] Aslani M.A.A., Eral M., 1994. Investigation of uranium recovery from dilute aqueous solutions using silk fibroin, Biological Trace Element Research, Cilt. 4345, s. 737-743. ISPN : 0-89603-300-7.
  • [19] Kütahyali Aslani C., Eral M., 2010. Sorption studies of uranium and thorium on activated carbon prepared from olive stones Kinetic and thermodynamic aspects, Journal of Nuclear Materials,Cilt. 396, s. 251-256. DOI: 10.1016/j.jnucmat.2009.11.018.