GEÇMİŞTEN GÜNÜMÜZE HÜCRESEL HABERLEŞME TEKNOLOJİLERİNİN GELİŞİMİ

Haberleşme, tarihin ilk dönemlerinden bu yana insanoğlunun temel ihtiyaçları arasında yerini almıştır. 1897 yılında telsiz telgraf ile başlayan kablosuz haberleşmeyi, mobil telefon görüşmeleri takip etmiş ve hücresel haberleşmenin temelleri ortaya atılmaya başlamıştır. Ayrıca, hücresel haberleşmenin düşük maliyet, esneklik, hareketliliğe olanak sağlaması gibi birçok özelliği de bu teknolojinin hızla gelişmesine ve yayılmasına neden olmuştur. Gelişim sürecinin başlarında, iletim ortamı üzerinden yalnızca ses verisi iletilirken son dönemlerde multimedya verilerinin iletilmesi taleplerindeki yoğun artışlarla birlikte hücresel haberleşme teknolojilerindeki gelişim, önemli ölçüde hızlanmıştır

EVOLUTION OF THE CELLULAR COMMUNICATION TECHNOLOGY FROM PAST TO PRESENT

Communication has taken its place among the basic needs of mankind since the earliest period of history. Starting with wireless telegraph in 1897, wireless communication was followed by mobile phone calls; thus, cellular telecommunication started to be founded. Moreover, many features of wireless (mobile) communication like low cost, flexibility and mobility have led to the expansion and rapid growth of this technology. While only audio data could be transmitted in transmission medium at the very beginning of the development process, the development in the cellular communication has drastically accelerated with the increasing demands for data transmission

___

  • [1] Bondyopadhyay PK. Sir JC Bose diode detector received Marconi's first transatlantic wirelesssignal of December 1901 (the “Italian Navy Coherer” Scandal Revisited). Proceedings of the IEEE, Cilt.86, 1998, s.259-285.
  • [2] Schiller JH. Mobile communications. Essex: Pearson Education, 2003.
  • [3] Hussain I, Hussain S, Khokhar I, Iqbal R. OFDMA as the Technology for the Next Generation Mobile Wireless Internet. Proceedings of the Third International Conference on Wireless and Mobile Communications. IEEE Computer Society, 2007, s.14.
  • [4] Srikanth S, Pandian P, Fernando X. Orthogonal frequency division multiple access in WiMAX and LTE: a comparison. Communications Magazine, IEEE, Cilt.50, 2012, s.153-161.
  • [5] Myung HG, Lim J, Goodman DJ. Single carrier FDMA for uplink wireless transmission. Vehicular Technology Magazine, IEEE, Cilt.1, 2006, s30-38.
  • [6] Rappaport, Theodore S. Wireless Communications: Principles and Practice, 2nd Edition Chapter 3: The Cellular Concept— System Design Fundamentals, New Jersey: Prentice Hall, 2002, s.57-96
  • [7] Blecher FH. Advanced mobile phone service. IEEE Transactions on Vehicular Technology, Cilt.29, 1980, s.238-244.
  • [8] Lehenkari J, Miettinen R. Standardisation in the construction of a large technological system—the case of the Nordic mobile telephone system.Telecommunications policy, Cilt.26, 2002, s.109-127.
  • [9] Hughes CJ, Appleby MS. Definition of a cellular mobile radio system. Communications, Radar and Signal Processing, IEEE Proceedings F, Cilt.132, 1985, s.416-424.
  • [10] Fan P. Multiple access technologies for next generation mobile communications. 2006 6th International Conference on ITS Telecommunications Proceedings, IEEE. 2006, s.10-11
  • [11] Alkan M, Genç Ö, Tekedere H. Bilgi ve İletişim Teknolojilerinin Eğitimde Kullanımı İçin Altyapı İhtiyaçları ve Yeni İletişim Teknolojileri, Elektrik, Elektronik, Bilgisayar Mühendislikleri Eğitimi 1. Ulusal Sempozyumu, Ankara ODTÜ-KKM, 2003, s.177-181,
  • [12] Zaki Y. Future mobile communications: LTE optimization and mobile network virtualization. Wiesbaden: Springer Vieweg, 2012,
  • [13] Huurdeman, AA. The worldwide history of telecommunications. John Wiley & Sons, 2003.
  • [14] Datta P, Kaushal S. Exploration and comparison of different 4G technologies implementations: a survey. 2014 Recent Advances In Engineering and Computational Sciences (RAECS), IEEE, 2014, s.1-6
  • [15] Rhee MY. Mobile communication systems and security. John Wiley & Sons (Asia) Pte Ltd, 2009.
  • [16] Harte LJ, Jacobs CA, Smith AD. IS-136 TDMA technology, economics, and services. Boston: Artech House Inc, 1998.
  • [17] Terasawa D, Tiedemann EG. CDMAOne (R)(IS-95) technology overview and evolution. In Radio Frequency Integrated Circuits (RFIC) Symposium, IEEE, 1999, s. 213-216
  • [18] Stüber GL. Principles of mobile communication. USA: Springer Science & Business Media, 2011.
  • [19] Halonen T, Romero J, Melero J. GSM, GPRS and EDGE performance: evolution towards 3G/UMTS. New York: John Wiley & Sons, 2004.
  • [20] Yang J, Tin N, Khandani AK. Adaptive modulation and coding in 3G wireless systems. In Vehicular Technology Conference, 2002 IEEE 56th Vehicular Technology Conference Proceedings, Cilt.1, 2002, s.544-548.
  • [21] Tomasi W. Elektronik iletişim teknikleri, çev: Atakay M, Ankara: MEB, 2002.
  • [22] Murota K, Hirade K. GMSK modulation for digital mobile radio telephony. Transactions on Communications, IEEE, Cilt.29, 1981, s.1044-1050.
  • [23] ITU, About mobile technology and IMT-2000: Cellular Standards for the Third Generation: The ITU's IMT-2000 family, https://www.itu.int/osg/spu/imt2000/technology.html
  • [24] Gozalvez J. Senior Editor MOBILE RADIO. IEEE Vehicular Technology Magazine, 2007, s.53-59.
  • [25] Darıcı A. 3. Nesil Mobil Haberleşme Sistemleri, Telekomünikasyon Kurumu Sektörel Araştırma ve Stratejileri Dairesi Başkanlığı, 2002.
  • [26] Dahlman E, Beming P, Knutsson J, Ovesjö F, Persson M, & Roobol C. WCDMA-the radio interface for future mobile multimedia communications. IEEE Transactions on Vehicular Technology, IEEE, Cilt.47, 1998, s1105-1118.
  • [27] Holma H, Toskala A. Wcdma for umts: Radio Access For Third Generation Mobile Communications, Chichester: John Wiley & Sons, 2004
  • [28] Rao YS, Kripalani A. (1999). cdma2000 mobile radio access for IMT 2000. 1999 IEEE International Conference on Personal Wireless Communication, IEEE, 1999, s.6-15.
  • [29] Holma H, Toskala, A. HSDPA/HSUPA for UMTS: high speed radio access for mobile communications. Chichester: John Wiley & Sons, 2007
  • [30] UMTS Forum, HSPA: High Speed Wireless Broadband From HSDPA to HSUPA and beyond, http://www.umtsforum.org/component/option,com_docman/task,doc_download/gid,1632/Itemid,214/
  • [31] 4G Americas, 4G Mobile Broadband Evolution: 3GPP Release 11 & Release 12 and Beyond, 2014
  • [32] Iwamura M, Etemad K, Fong MH, Nory R, Love R. Carrier aggregation framework in 3GPP LTE-advanced [WiMAX/LTE Update]. Communications Magazine, IEEE, Cilt.48, 2010, s.60-67.
  • [33] Ntouni GD, Boulogeorgos AA, Karas DS, Tsiftsis T, Foukalas F, Kapinas VM, Karagiannidis GK. Inter-band carrier aggregation in heterogeneous networks: Design and assessment. 2014 11th International Symposium on Wireless Communications Systems (ISWCS), IEEE, 2014, s.842-847.
  • [34] Bhushan N, Lott C, Black P, Attar R, Jou YC, Fan M, Au J. CDMA2000 1× EV-DO revision a: a physical layer and MAC layer overview. Communications Magazine, IEEE, Cilt.44, 2006, s.37-49.
  • [35] Schulz, Donhauser, Bowne, 1xEV-DO Revision A + B, White Paper, Rohde&Schwarz, October 2013 -1MA213_0e, 2013.
  • [36] Fan CX, Chen HH, Lu WW. China’s perspectives on 3G mobile communications and beyond: TD-SCDMA technology. IEEE Wireless Communications, Cilt.9, 2002, s.48-59.
  • [37] Soy H, Özdemir Ö, Bayrak M. Gelecek Nesil Mobil Haberleşme Sistemleri: 3G, 4G ve Ötesi. Akademik Bilişim ’12 XIV. Akademik Bilişim Konferansı Bildirileri Uşak Üniversitesi, 1 - 3 Şubat 2012, s.211-218
  • [38] Yallapragada R, Kripalani V, Kripalani A. EDGE: a technology assessment. 2002 IEEE International Conference on Personal Wireless Communications, IEEE, 2002, s.35-40,
  • [39] Gyasi-Agyei A, Halme SJ. Mobile IP based DECT multimedia architectures for IMT2000. 52nd Vehicular Technology Conference - VTC 2000, IEEE, Cilt.2, 2000, s.963-970.
  • [40] IEEE 802.16 Working Group. IEEE 802.16 e-2005 IEEE Standard for Local and metropolitan area networks Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems Amendment for Physical and Medium Access Control Layers for combined Fixed and Mobile Operation in Licensed Bands [S]. standards. ieee. org/getieee802/download/802.16 e-2005. pdf.], 2005
  • [41] Stefania S, Issam T, Matthew B. LTE, the UMTS long term evolution: from theory to practice. Chichester: John Wiley & Sons, 2011
  • [42] Report ITU-R M.2134-0, Requirements related to technical performance for IMTAdvanced radio interface(s), http://www.itu.int/pub/R-REP-M.2134-2008/en, 2008
  • [43] Akyildiz IF, Gutierrez-Estevez DM, Reyes EC. The evolution to 4G cellular systems: LTE-Advanced. Physical Communication, USA: Elsevier, Cilt.3, 2010, s.217-244.
  • [44] Ahmadi S. Mobile WiMAX: A systems approach to understanding IEEE 802.16 m radio access technology. USA: Academic Press. 2010
  • 45] Urfalıoğlu R. 4. Nesil Mobil Haberleşmenin Standartlaşma Sürecinde Aday Teknolojileri LTE ve Mobil WiMAX’in Karşılaştırmalı Analizi, Türkiye için Geçiş Stratejisi Önerileri, Bilgi Teknolojileri ve İletişim Kurumu, Ankara, 2011
  • [46] Prasad R. OFDM for wireless communications systems. Boston: Artech House, 2004
  • [47] Ertürk S. Sayısal haberleşme. İstanbul: Birsen Yayınevi, 2010
  • [48] Mietzner J, Schober R, Lampe L, Gerstacker WH, Hoeher P. Multiple-antenna techniques for wireless communications-a comprehensive literature survey. Communications Surveys & Tutorials, IEEE, Cilt.11, 2009, s.87-105.
  • [49] Çıbuk M. WiMAX/IEEE 802.16 Ağları Üzerinden WEB Tabanlı Bio-Telemetri Uygulamaları İçin Protokol Tasarımı ve Gerçekleştirilmesi, Doktora tezi, Elazığ:Fırat Üniversitesi, Fen Bilimleri Enstitüsü, 2009
  • [50] WiMAX Forum ® Newsletter – November 2013, Available: http://www.wimaxforum.org/LiteratureRetrieve.aspx?ID=194526
  • [51] Garg V. Wireless Communications & Networking. San Francisco: Morgan Kaufmann, 2007.
  • [52] WiMAX Forum®, WiMAX Advanced: Deployment Scenarios Based on Input from WiMAX Operators and Vendors, TSC Approved, 2014.
  • [53] WiMAX Forum®, Air Interface Specifications, WMF-T23-001-R022v02, 2014.
  • [54] WiMAX Forum®, WiMAX and the IEEE 802.16m AirInterface Standard, 2010.
  • [55] Ho KP. Phase-modulated optical communication systems. USA: Springer Science & Business Media, 2005.
  • [56] Abdullah MFL, Yonis AZ. Impact of modulation techniques on aggregated LTEAdvanced. 2013 IEEE International Conference on Space Science and Communication (IconSpace), IEEE, 2013, s.267-271.
  • [57] Baker M. LTE-Advanced physical layer. REV-090003r1 IMT-Advanced Evaluation Workshop, Beijing, 2009.
  • [58] 3GPP TS 36.211 v.12.5.0, Physical Channels and Modulation for Evolved Universal Terrestrial Radio Access (E-UTRA)(Release 12). Available:www.3gpp.org, 2015
  • [59] Recommendation ITU-R M.2083-0, IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond, https://www.itu.int/rec/R-REC-M.2083- 0-201509-I/en, 2015
  • [60] IMT-2020 (5G) Promotion Group, “IMT vision towards 2020 and beyond”, 2014.
  • [61] Premnath S, Wasden D, Kasera SK, Patwari N, Farhang-Boroujeny B. Beyond OFDM: best-effort dynamic spectrum access using filterbank multicarrier. IEEE/ACM Transactions on Networking, IEEE, Cilt.21, 2013, s.869-882.
  • [62] Larsson E, Edfors O, Tufvesson F, Marzetta T. Massive MIMO for next generation wireless systems. Communications Magazine, IEEE, Cilt.52, 2014, s.186-195.
  • [63] Gupta A, Jha RK. A survey of 5g network: Architecture and emerging technologies. Access, IEEE, Cilt.3, 2015, s.1206-1232.
  • [64] Report ITU-R M.2376, Technical feasibility of IMT in bands above 6 GHz, https://www.itu.int/pub/R-REP-M.2376, 2015