Arayüzeyinde Poliamid 6,6 (PA 66) Nanofiber Tabakalar Bulunan Cam Elyaf/Epoksi Kompozit Şaftların Serbest Titreşim ve Burulma Burkulması Analizi

Bu çalışmada, PA 66 nanofiberlerin dört tabakalı cam elyaf/epoksi kompozit şaftın serbest titreşim ve burulma burkulmasına etkisi nümerik olarak incelenmiştir. Nümerik analizler ANSYS 16.2 sonlu elemanlar programı kullanılarak gerçekleştirilmiştir. Üç farklı nanofiber alansal yoğunluğu (8, 10 and 12 g/m2) ele alınarak, nanofiber miktarının titreşim frekanslarına ve burulma burkulması yüküne etkileri ortaya çıkarılmıştır. Nümerik sonuçlara göre, PA 66 nanofiberlerin kompozit şaftın serbest titreşim frekanslarına ve burkulma yüküne sırasıyla %10 ve %22 oranında pozitif etkisi olduğu gözlemlenmiştir. PA 66 nanofiberlerin kompozit şaftın burulma yüküne hasar etkisi önemli bir etkisi görülmemiştir.

Free Vibration and Torsional Buckling Analysis of E- Glass/Epoxy Composite Shafts with Polyamide-6,6 (PA 66) Nanofiber Interlayers

In this study, the effects of polyamide-6,6 (PA 66) nanofibers on the free vibration and torsional buckling of four-layered E-glass/epoxy composite drive shaft were investigated numerically. The numerical analyses were carried out by using ANSYS 16.2 software package. Three different nanofiber areal weight densities (AWDs), 8, 10 and 12 g/m2, were considered to reveal the relationship between the amount of nanofibers in the interlaminar region and natural frequencies/critical torsional buckling loads. The numerical results showed that the PA-66 nanofibers had a positive effect on natural frequencies and torsional buckling load of E-glass/epoxy composite shaft. The natural frequencies and buckling load of the composite shaft can be increased by about 10 % and 22% using PA 66 nanofibers as the secondary reinforcing material in the interlaminar region. The failure torque values were not significantly affected with the inclusion of PA 66 nanofibers in the interlaminar region.

___

  • [1] Greenhalgh, E.S., Rogers, C., Robinson, P. 2009. Fractographic observations on delamination growth and the subsequent migration through the laminate. Composites Science and Technology, Cilt. 69(14), s. 2345-2351.DOI:10.1016/j.compscitech.2009.01.034
  • [2] Greenhalgh E.S. 2009. Failure analysis and fractography of polymer composites, CRC Press.
  • [3] Beylergil, B., Tanoglu, M., Aktaş, E. 2017. Enhancement of interlaminar fracture toughness of carbon fiber/epoxy composites using polyamide 6/6 electrospun nanofibers. Journal of Applied Polymer Science, Cilt. 134(35): 45244. DOI: 10.1002/app.45244
  • [4] Daelemans, L., van der Heijden, S., De Baere I, Rahier H, Van Paepegem, W., De Clerck, K.2015. Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils. Composites Science and Technology, Cilt. 117, s.244–256. DOI: 10.1016/j.compscitech.2015.06.021
  • [5] Zhang, H., Bharti, A., Li, Z., Du, S., Bilotti, E., Peijs, T. 2015. Localized toughening of carbon/ epoxy laminates using dissolvable thermoplastic interleaves and electrospun fibres. Composites Part A: Applied Science and Manufacturing, Cilt. 79: s. 116–26 DOI:10.1016/j.compositesa.2015.09.024
  • [6] Li, G., Li, P., Yu, Y., Jia, X., Zhang, S., Yang, X., Ryu, S. 2008. Novel carbon fiber/epoxy composite toughened by electrospun polysulfone nanofibers. Materials Letters, Cilt.62(3), s. 511–514. DOI: 10.1016/j.matlet.2007.05.080
  • [7] Li, G., Li, P., Zhang, C., Yu, Y., Liu, H., Zhang, S., Jia, X., Yang, X., Xue, Z., Ryu, S. 2008. Inhomogeneous toughening of carbon fiber/epoxy composite using electrospun polysulfone nanofibrous membranes by in situ phase separation. Composites Science Technology Cilt.68(3–4)i s. 987–94. DOI: 10.1016/j.compscitech.2007.07.010
  • [8] Saghafi, H., Brugo, T., Minak, G., Zucchelli, A. 2015. The effect of PVDF nanofibers on mode-I fracture toughness of composite materials. Composites Part B: Engineering, Cilt.72, s. 213–216. DOI:10.1016/j.compositesb.2014.12.015
  • [9] Beckermann, G.W. 2017. Nanofiber interleaving veils for improving the performance of composite laminates. Reinforced Plastics, Cilt. 61(5), s. 289-93. DOI: 10.1016/j.repl.2017.03.006
  • [10] Garcia, C., Wilson, J., Trendafilova, I., Yang, L. 2017. Vibratory behaviour of glass fibre reinforced polymer (GFRP) interleaved with nylon nanofibers. Composite Structures, Cilt. 176, s. 923–932. DOI: 10.1016/j.compstruct.2017.06.018
  • [11] Khalkhali, A., Nikghalb, E., Norouzian, M. 2015. Multi-objective optimization of hybrid carbon/glass fiber reinforced epoxy composite automotive drive shaft. Int. J. Eng, Cilt. 28(4), s.583–592.
  • [12] Talib, A.R.A, Ali, A., Badie, M.A., Lah, N.A.C, Golestaneh, A.F. 2010. Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft, Materials and Design, Cilt. 31, s. 514-521. DOI:10.1016/j.matdes.2009.06.015.
  • [13] Zhu, P., Lei, Z.X., Liew, K.M. 2012. Static and free vibration analyses of carbon nanotubereinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures Cilt. 94, s. 1450-1460. DOI:10.1016/j.compstruct.2011.11.010.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi