Elektrokimyasal Anotlama Yöntemiyle ZnO Nanotellerin Üretilmesi ve Fotokatalitik Aktiviteleri

Bu çalışmada ZnO nanoteller Zn plakalar üzerine elektrokimyasal anotlama yöntemi ile iki farklı voltaj (5V-10V) kullanılarak büyütülmüştür. Büyütme işleminin ardından kristalin çinko oksit fazı oluşturmak amacıyla hava ortamında 300 °C ‘de 1 saat süreyle ısıl işleme tabi tutulmuştur. Elde edilen yapıların morfolojik ve yapısal özellikleri sırasıyla taramalı elektron mikroskobu (SEM) ve X-ışınları kırınım difraktometresi (XRD) ile tespit edilmiştir.  Son olarak ZnO nanotellerin fotokatalitik performansı sulu metilen mavisi çözeltileri üzerinde test edilmiştir. Büyütülen yapılarda artan voltaj ile birlikte nano tel oluşumunda artış gözlenmiştir. Anotlama ve ısıl işlem sonucunda elde edilen yapının ZnO nanotel yapısında olduğu belirlenmiştir.  Fotokatalitik testler sonucunda 10V anotlama voltajı ile büyütülen yapılarda parçalanma hızı 112x10-3 sa-1 olarak tespit edilmiştir. 

Production and Photocatalytic Activities of ZnO Nanowire by Electrochemical Anodization

In this study, ZnO nanowires were grown on Zn sheet plates by electrochemical anodization using two different voltages (5V-10V). Following the growth process, the materail was heat treated at 300 ° C for 1 hour in the air to form the crystalline zinc oxide phase. The morphological and structural properties of the obtained structures were determined by scanning electron microscopy (SEM) and X-ray diffraction diffractometry (XRD), respectively. Finally, the photocatalytic performance of ZnO nanowires was tested on aqueous methylene blue solutions. An increase in nanowire formation was observed with increased voltage in the grown structures. It was determined that the structure obtained by anodizing and heat treatment is in the ZnO nanowire structure. As a result of photocatalytic tests, The highest photocatalytic degradation rate was determined as 112x10-3 sa-1 in the growth structures with 10V anodization voltage.

___

  • [1] Zhang Y., Ram M. K., Stefanakos E. K., Goswami D. Y., 2012. Synthesis, characterization, and applications of ZnO nanowires, Journal of Nanomaterials, Cilt. 2012, s. 1-22, DOI:10.1155/2012/624520.
  • [2] Weintraub B., Zhou Z., Y. Li Y., Deng Y., 2010. Solution synthesis of one-dimensional ZnO nanomaterials and their applications, Nanoscale, Cilt. 2, s. 1573–1587, DOI: 10.1039/c0nr00047g.
  • [3] Leitner J., Bartunek V., Sedmidubsky D., Jankosky O., 2018. Thermodynamic properties of nanostructured ZnO, Applied Metarials Today, Cilt. 10, s. 1-11, DOI:10.1016/j.apmt.2017.11.006.
  • [4] Navrotsky A., 2011. Nanoscale effects on thermodynamics and phase equilibria in oxide systems, Chemphyschem, Cilt. 12, s. 2207-2215, DOI: 10.1002/cphc.201100129.
  • [5] Hsiu-Fen L., Shih-Chieh L., Sung-Wei H., 2005. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst, Journal of Photochemistry and Photobiology A: Chemistry, Cilt. 174, s. 82-87, DOI:10.1016/j.jphotochem.2005.02.015.
  • [6] Chandrappa K G, Venkatesha, T V, 2012. Electrochemical synthesis and photocatalytic property of zinc oxide nanoparticles, Nano-Micro Letters, Cilt. 4, s. 14-24, DOI:10.3786/nml.v4i1.p14-24.
  • [7] Gancheva M., Markova-Velichkova M., Atanasova G., Kovacheva D., Uzunov I., Cukeva R., 2016. Design and photocatalytic activity of nanosized zinc oxides, Applied Surface Science, Cilt. 368, s. 258-266, DOI:10.1016/j.apsusc.2016.01.211.
  • [8] Alessandro D. M., Maria E. F., Vittorio P., Giuliana I., 2017. ZnO for application in photocatalysis: From thin films to nanostructures, Materials Science in Semiconductor Processing, Cilt. 69, s. 44-51, DOI:10.1016/j.mssp.2017.03.029.
  • [9] Yun Z., Zhiming P., Xinchen W., 2013. Advances in photocatalysis in China, Chinese Journal of Catalysis, Cilt 34, s.1872-2067. DOI:10.1016/S1872-2067(12)60548-8.
  • [10] Kezhen Q., Bei C., Jiaguo Y., Wingkei H., 2017. Review on the improvement of the photocatalytic and antibacterial activities of ZnO, Journal of Alloys and Compounds, Cilt. 727, s. 792-820. DOI:10.1016/j.jallcom.2017.08.142.
  • [11] Cui J., 2012. Zinc oxide nanowires, Materials Characterization, Cilt. 64, s. 43-52, DOI:10.1016/j.matchar.2011.11.017
  • [12] Demirci S., Yurddaskal M., Dikici T., Sarıoğlu C., 2018. Fabrication and characterization of novel iodine doped hollow and mesoporous hematite (Fe2O3) particles derived from sol-gel method and their photocatalytic performances, Journal of Hazardous Materials, Cilt 345, s. 27-37, DOI:10.1016/j.jhazmat.2017.11.009.
  • [13] Dikici T., Demirci S., Erol M., 2017. Enhanced photocatalytic activity of micro/nano textured TiO2 surfaces prepared by sandblasting/acid-etching/anodizing process, Journal of Alloys and Compounds, Cilt. 694, s. 246-252, DOI:10.1016/j.jallcom.2016.09.330.
  • [14] Erol M., Dikici T., Toparli M., Celik E., 2014. The effect of anodization parameters on the formation of nanoporous TiO2 layers and their photocatalytic activities, Journal of Alloy and Compounds, Cilt 604, s. 66-72, DOI:10.1016/j.jallcom.2014.03.105.