304 Paslanmaz çeliğin mikroyapı ve mekanik özellikleri üzerinde yüksek enerjili lazer kaynak parametrelerinin etkisi

2 mm kalınlığında 304SS malzemelerine otojen plaka üstü dikiş şeklinde farklı ısı girdilerine sahip lazer kaynağı uygulanmıştır. Nd: YAG lazer kullanılarak özellikle düşük kaynak hızlarında lazer enerjisinin kaynak performansı üzerine etkisi araştırılmıştır. Kaynak performansı kaynak dikiş morfolojisi, mikroyapı ve mekanik özellikler açısından karakterize edilmiştir. Sonuçlar, ısı girdisinin artmasıyla kraterin arttığını ortaya koymuş, bu nedenle krater ve ısı girdisi arasında doğrusal bir ilişki olduğu belirtilmiştir. Isı girdisindeki kademeli artışın kaynak dikişinin penetrasyonu ile doğrudan ilişkili olmadığı bulunmuştur. En yüksek ısı girdisinde, kaynak dikişleri önemli ölçüde genişlemiş ve krater derinleşmiştir, bu kaynak dikişlerinin sertliği artarken çekme dayanımı ve süneklik azalmıştır. En iyi mekanik özellikler orta seviyedeki ısı girdisine sahip yüksek lazer enerjisi ile elde edilmiştir. Bu kaynaklar, 304SS ana metalinden daha iyi mukavemet sergilemiştir. Mikrosertlik değerleri füzyon bölgesinden ana metale homojen olarak dağılmıştır. Lazer enerjisi ferrit ağını arttırmış ve daha ince ferritler oluşturmuştur. Sonuç olarak bu çalışma ile 304 SS 2 mm kalınlığındaki plakaların kaynağında iyi mukavemet, iyi süneklik ve kaynak dikiş morfolojisi açısından kullanılabilir lazer kaynak parametreleri tanımlanmıştır.

Effect of high-energy laser welding parameters on the microstructure and mechanical properties of 304 stainless steel

Autogenous bead-on-plate laser welding was performed on 2 mm 304SS materials at different heat inputs. The influence of laser energy in low welding speeds on weld performance using a Nd:YAG laser was studied. The weld performance was characterized in terms of weld bead morphology, microstructure and mechanical properties. The result revealed that the crater increased with the increase of heat input, so there is a linear relationship between crater and heat input. The gradual increase of the heat input was not directly related to the penetration of the weld bead. At the highest heat input, weld beads considerably expanded and also the crater deepened, the hardness increased in these joints while tensile strength and ductility reduced. The best mechanical properties were obtained with high laser energy at intermediate heat input. These weldments exhibited better strength even better than base metal 304SS. The microhardness values were distributed homogeneously from the fusion zone to the base metal. Laser energy increased the ferrite network and brought finer ferrites. As a result, usable laser welding parameters in terms of good strength, as well as good ductility and weld bead morphology were defined for welding 304 SS with 2 mm thickness.

___

  • [1] Linjie, Z., Jianxun, Z., Kalaoui, H., Li, H., Wang, Y. 2007. A comparative study of the residual deformation of an automotive gear-case assembly due to deep-penetration high-energy welding. Journal of Materials Processing Technology,Cilt. 190(1-3),s. 109–116. DOI:10.1016/j.jmatprotec.2007.03.101
  • [2] Kumar, N., Mukherjee, M., Bandyopadhyay, A. 2017. Comparative study of pulsed Nd:YAG laser welding of AISI 304 and AISI 316 stainless steels. Optics & Laser Technology,Cilt. 88, s.24–39. DOI:10.1016/j.optlastec.2016.08.018
  • [3] Wang, S. C., Wei, P. S. 1992. Energy-Beam redistribution and absorption in a drilling or welding cavity. Metallurgical Transactions B, Cilt.23(4),s. 505–511. DOI:10.1007/bf02649669
  • [4] Buchwalder, A., Rüthrich, K., Zenker, R., Biermann, H. 2013. Electron Beam Welding of High Alloy CrMnNi Cast Steels with TRIP/TWIP Effect. Advanced Engineering Materials, Cilt.15(7), s.566–570. DOI:10.1002/adem.201200355
  • [5] Bahrami Balajaddeh, M., Naffakh-Moosavy, H. 2019. Pulsed Nd:YAG laser welding of 17-4 PH stainless steel: Microstructure, mechanical properties, and weldability investigation. Optics & Laser Technology, Cilt.119, s.105651. DOI:10.1016/j.optlastec.2019.105651
  • [6] Wei, X., Ling, X., Zhang, M. 2018. Influence of surface modifications by laser shock processing on the acid chloride stress corrosion cracking susceptibility of AISI 304 stainless steel. Engineering Failure Analysis,Cilt. 91, s.165–171. DOI:10.1016/j.engfailanal.2018.04.045
  • [7] Zhang, L., Luo, K. Y., Lu, J. Z., Zhang, Y. K., Dai, F. Z., Zhong, J. W. 2011. Effects of laser shock processing with different shocked paths on mechanical properties of laser welded ANSI 304 stainless steel joint. Materials Science and Engineering: A,Cilt. 528(13-14), s.4652–4657. DOI:10.1016/j.msea.2011.02.054
  • [8] Yang, J., Wang, Y., Li, F., Huang, W., Jing, G., Wang, Z., Zeng, X. 2019. Weldability, microstructure and mechanical properties of laser-welded selective laser melted 304 stainless steel joints. Journal of Materials Science & Technology. DOI:10.1016/j.jmst.2019.04.017
  • [9] Mao, K. S., Sun, C., Shiau, C.-H., Yano, K. H., Freyer, P. D., El-Azab, A. A., … Wharry, J. P. 2020. Role of cavities on deformation-induced martensitic transformation pathways in a laser-welded, neutron irradiated austenitic stainless steel. Scripta Materialia, Cilt.178, s.1–6. DOI:10.1016/j.scriptamat.2019.10.037
  • [10] Shah, A., Kumar, A., Ramkumar, J. 2018. Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel. Journal of Materials Processing Technology, Cilt.256, s.109–120. DOI:10.1016/j.jmatprotec.2018.02.005
  • [11] Geng, Y., Akbari, M., Karimipour, A., Karimi, A., Soleimani, A., Afrand, M. 2019. Effects of the laser parameters on the mechanical properties and microstructure of weld joint in dissimilar pulsed laser welding of AISI 304 and AISI 420. Infrared Physics & Technology, Cilt.103, s.103081. DOI:10.1016/j.infrared.2019.103081
  • [12] Mukherjee, M., Pal, T. K. 2013. Role of microstructural constituents on surface crack formation during hot rolling of standard and low nickel austenitic stainless steels. Acta Metallurgica Sinica (English Letters), Cilt.26(2), s.206–216. DOI:10.1007/s40195-012-0200-7
  • [13] Zhang, L., Lu, J. Z., Luo, K. Y., Feng, A. X., Dai, F. Z., Zhong, J. S., … Zhang, Y. K. 2013. Residual stress, micro-hardness and tensile properties of ANSI 304 stainless steel thick sheet by fiber laser welding. Materials Science and Engineering: A,Cilt. 561, s.136–144. DOI:10.1016/j.msea.2012.11.001
  • [14] Al-Roubaiy A.2016.Characterization of the nugget zone between Aluminum and 304 Stainless Steel Laser Welded. Advances in Natural and Applied Sciences. DOI:10(12),38-49.
  • [15] Zhang, M., Chen, G., Zhou, Y., Liao, S. 2014. Optimization of deep penetration laser welding of thick stainless steel with a 10kW fiber laser. Materials & Design,Cilt. 53, s.568–576. DOI:10.1016/j.matdes.2013.06.066
  • [16] Hafez, K. M., Katayama, S. 2009.Fiber laser welding of AISI 304 stainless steel plates.Quarterly Journal Of The Japan Weldıng Socıety. Cilt.27(2), s.69–73.
  • [17] Cui C.Y. , Cui X.G. , Ren X.D. , Liu T.T. , J.D.Hu Wang Y.M.2013.Microstructure and microhardness of bre laser butt welded joint of stainless steel plates. Mater. Design. Cilt.49,s. 761-765.
  • [18] Balasubramanian K.R., Siva Shanmugam N., Buvanashekaran G., Sankaranarayanasamy K .2008.Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet.Adv. Produc. Engineer Manag. Cilt.3(2), s.93-105.
  • [19] Taskin, M., Elazig, U. C., Turkmen, M. 2011. X-ray tests of AISI 430 and 304 stainless steels and AISI 1010 low carbon steel welded by CO2 laser beam welding. Materials Testing,Cilt. 53(11-12),s. 741-747. DOI:10.3139/120.110283
  • [20] Petretis, Br , Balciuniene, M.2005.Peculiarities of laser welding of metals.Lithuaniam J. Phys. Cilt.45(1) , s.59-69. [21] Wang, X-N., Sun, Q., Zheng, Z. Di, H-S.2017.Microstructure and fracture behavior of laser welded joints of DP steels with different heat inputs.Mat. Sci. Eng. A-Struct , Cilt.699,s.18–25.
  • [22] Akman, E., Demir, A., Canel, T., Sınmazçelik, T. 2009. Laser welding of Ti6Al4V titanium alloys. Journal of materials processing technology, Cilt.209(8), s.3705-3713. DOI:10.1016/j.jmatprotec.2008.08.026
  • [23] Saha, P., Datta, S., Raza, M. S., Pratihar, D. K. 2019. Effects of heat input on weld-bead geometry, surface chemical composition, corrosion behavior and thermal properties of fiber laser-welded nitinol shape memory alloy. Journal of Materials Engineering and Performance, Cilt.28(5), s.2754-2763. DOI:10.1007/s11665-019-04077-0
  • [24] Li, R., Li, Z., Zhu, Y., Rong, L. 2011. A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Materials Science and Engineering: A, Cilt.528(3),s. 1138–1142. DOI:10.1016/j.msea.2010.09.084
  • [25] Chatterjee, S., Sahoo, S. K., Swain, B., Mahapatra, S. S., Roy, T. 2020. Quality characterization of dissimilar laser welded joints of Ti6Al4V with AISI 304 by using copper deposition technique. The International Journal of Advanced Manufacturing Technology. DOI:10.1007/s00170-020-04935-5
  • [26] Anawa, E. M., Olabi, A. G. 2008. Control of welding residual stress for dissimilar laser welded materials. Journal of Materials Processing Technology, Cilt.204(1-3), s.22–33. DOI:10.1016/j.jmatprotec.2008.03.047
  • [27] Kangazian, J., Shamanian, M. 2016. Multiresponse Optimization of Pulsed-Current Gas Tungsten Arc Welding (PCGTAW) for AISI 304 Stainless Steel to St 52 Steel Dissimilar Welds. Metallography, Microstructure, and Analysis,Cilt. 5(3), s.241–250. DOI:10.1007/s13632-016-0277-x
  • [28] Bahrami Balajaddeh, M., Naffakh-Moosavy, H.2019.Pulsed Nd:YAG laser welding of 17-4 PH stainless steel: Microstructure, mechanical properties, and weldability investigation.Optik Laser Technology,Cilt. 119,s.105651.
  • [29] Bilmes, P., Gonzalez, A., Llorente, C., Solari, M. 1996. Effect ofδferrite solidification morphology of austenitic stainless steel weld metal on properties of welded joints. Welding International, Cilt.10(10), s.797–808. DOI:10.1080/09507119609549091
  • [30] Liu, Y., Sun, Y. 2019. In-situ observation of interaction between precipitates and austenite during δ→γ phase transformations. Materials Science and Technology, Cilt.35(5), s.536–543. DOI:10.1080/02670836.2019.1572299
  • [31] Sheikhi, M., Malek Ghaini, F., Torkamany, M. J., Sabbaghzadeh, J. 2009. Characterisation of solidification cracking in pulsed Nd:YAG laser welding of 2024 aluminium alloy. Science and Technology of Welding and Joining, Cilt.14(2), s.161–165. DOI:10.1179/136217108x386554
  • [32] Katayama, S. 2000. Solidification phenomena of weld metals (1st report). Characteristic solidification morphologies, microstructures and solidification theory. Welding International, Cilt.14(12),s. 939–951. DOI:10.1080/09507110009549297
  • [33] Sheikhi, M., Malek Ghaini, F., Torkamany, M. J., Sabbaghzadeh, J. 2009. Characterisation of solidification cracking in pulsed Nd:YAG laser welding of 2024 aluminium alloy. Science and Technology of Welding and Joining, Cilt.14(2), s.161–165. DOI:10.1179/136217108x386554
  • [34] Kim, S. K., Lee, Y. D., Hansson, K., Fredriksson, H. 2002. Influence of Cooling Rate on the Hot Cracking Formation of Nickel Rich Alloys. ISIJ International, Cilt.42(5), s.512–519. DOI:10.2355/isijinternational.42.512
  • [35] Fabbro, R. 2019. Scaling laws for the laser welding process in keyhole mode. Journal of Materials Processing Technology, Cilt.264, s.346–351. DOI:10.1016/j.jmatprotec.2018.09.027
  • [36] Matsunawa, A., Mizutani, M., Katayama, S., Seto, N. 2003. Porosity formation mechanism and its prevention in laser welding. Welding International, Cilt.17(6), s.431–437. DOI:10.1533/wint.2003.3138
  • [37] Matsunawa, A. 2001. Problems and solutions in deep penetration laser welding. Science and Technology of Welding and Joining, Cilt.6(6), s.351–354. DOI:10.1179/stw.2001.6.6.351
  • [38] Dawes, C.T.1992.Laser Welding A Practical Guide ,1st edition Woodhead Publishing.
  • [39] Saravanan, S., Sivagurumanikandan, N., Raghukandan, K. 2019. Effect of heat input on microstructure and mechanical properties of Nd: YAG laser welded super duplex stainless steel-Numerical and experimental approach. Optik. DOI:10.1016/j.ijleo.2019.03.145
  • [40] Farabi, N., Chen, D. L., Zhou, Y. 2011. Microstructure and mechanical properties of laser welded dissimilar DP600/DP980 dual-phase steel joints. Journal of Alloys and Compounds, Cilt.509(3),s. 982–989. DOI:10.1016/j.jallcom.2010.08.158
  • [41] Kumar, S., Shahi, A. S. 2011. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints. Materials & Design, Cilt.32(6),s. 3617–3623. DOI:10.1016/j.matdes.2011.02.017
  • [42] Wollin, P., Gooch, T.G.1995.Welding processes for stainless Steels. Welding World Journal. Cilt.36,s.75-82.
  • [43] Benyounis, K. Y., Olabi, A. G., Hashmi, M. S. J. 2008. Multi-response optimization of CO2 laser-welding process of austenitic stainless steel. Optics & Laser Technology,Cilt. 40(1), s.76–87. DOI:10.1016/j.optlastec.2007.03.009
  • [44] Osoba, L. O., Ojo, O. A. 2012. Influence of laser welding heat input on HAZ cracking in newly developed Haynes 282 superalloy. Materials Science and Technology, Cilt.28(4), s.431–436. DOI:10.1179/1743284711y.0000000078
  • [45] Zacharia, T., David, S. A., Vitek, J. M., Debroy, T. 1989. Heat transfer during Nd: Yag pulsed laser welding and its effect on solidification structure of austenitic stainless steels. Metallurgical Transactions A, Cilt.20(5), s.957–967. DOI:10.1007/bf02651661
  • [46] Vrancken, B., Thijs, L. , Kruth, J.P.2012. Van Humbeeck J.Heat treatment of Ti6Al4V produced by Selective Laser Melting:Microstucture and mechanical proparties.J. Alloy. Compd.Cilt.541,s.177.
  • [47] Chen, R., Jiang, P., Shao, X., Mi, G., Wang, C. 2017. Analysis of crack tip transformation zone in austenitic stainless steel laser-MIG hybrid welded joint. Materials Characterization,Cilt. 132, s.260–268. DOI:10.1016/j.matchar.2017.08.022
  • [48] Hao, C., Chun-xu, P. 2003. Microstructure and fractural morphology of cobalt-based alloy laser cladding. Journal of Wuhan University of Technology-Mater. Sci. Ed., Cilt.18(3), s.30–32. DOI:10.1007/bf02838452
  • [49] Fu, J. W., Yang, Y. S., Guo, J. J., Tong, W. H. 2008. Effect of cooling rate on solidification microstructures in AISI 304 stainless steel. Materials Science and Technology, Cilt.24(8),s. 941–944. DOI:10.1179/174328408x295962
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi
Sayıdaki Diğer Makaleler

Bal peteği ve Beton Çekirdek Malzemesine Sahip Cam/Epoksi ve Karbon/Epoksi Kompozit Tüplerinin Bası Davranışı

Mehmet Emin DENİZ, Mehmet Beşir ALTIN

A Deep Learning-Based Hotel Image Classifier for Online Travel Agencies

FATMA BOZYİĞİT, Alperen TAŞKIN, Kadir AKAR, DENİZ KILINÇ

Açık Deniz Rüzgar Türbinleri için Uygun Yer Seçim Kriterlerinin İrdelenmesi ve Kuzey Ege Kıyılarına Uygulanması

Muhammed İkbal TORTUMLUOĞLU, Mustafa DOĞAN

Seramik Malzemelerde Piroplastik Deformasyonların Deneysel Analizi ve Sonlu-Elemanlar Yöntemiyle Doğrulanması

Aybike ÜRKMEZ, Sefa MANAV, Naci ZAFER

Preparation and characterization of magnetic featured supported heterogeneous catalysts

Yıldıray ALDEMİR, Elif ANT BURSALI, Muruvvet YURDAKOC

Biyomedikal Uygulamalar için Wollastonit Partikül Takviyeli Hidroksiapatit Kompozit Granüllerin Üretilmesi ve Karakterizasyonu

Fatih Erdem BAŞTAN, Onurcan KARAARSLAN, Fatih ÜSTEL

İplik Üretim Sistemlerinin 1x1 Rib Kumaşların Boyutsal Parametrelerine Etkisi

Serin MEZARCIÖZ, R. Tuğrul OĞULATA

Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi

Halis KANDAŞ, OKAN ÖZDEMİR

Alaşehir Alt Havzasının (Gediz Havzası, Batı Anadolu) Nem Değişimi Yöntemine Göre Yeraltısuyu Besleniminin Değerlendirilmesi

Seda DURUKAN, Celalettin ŞİMŞEK, Serhat TONKUL, Alper BABA, Gökmen TAYFUR

Yapay Sinir Ağları ve Destek Vektör Regresyonu ile Talep Tahmini: Gıda İşletmesinde Bir Uygulama

Feyza ÇOBAN, LEYLA DEMİR