Polen Tespiti için Sıvı Kristal Esaslı Yenilikçi Sensör Geliştirilmesi

Bu çalışmada, alerjiye neden olan polen konsantrasyonunun tespitine yönelik sıvı kristal esaslı bir polen sensörü geliştirilmiştir. Geliştirilen sensörde, algılayıcı madde olarak kolesterik sıvı kristal kullanılmıştır. Kolesterik sıvı kristal örnekleri; nematik sıvı kristal ve kiral maddelerin farklı bileşimleri kullanılarak hazırlanmıştır. Hazırlanan kolesterik sıvı kristal numunelerinin oda sıcaklığında da sıvı kristalin bir alt fazı olarak gözlemlenebilmesi istendiği için çeşitli kiral maddeler kullanılarak farklı numuneler formüle edilmiştir. Hazırlanan numunelere ağırlıkça farklı oranlarda polen eklenmiş ve renklerinde meydana gelen değişiklikler spektrofotometre yardımıyla saptanmıştır. Kolesterik sıvı kristalin optik özelliklerinin sağladığı renk değiştirme özelliğinden yararlanılarak, artan polen konsantrasyonuyla yeşilden maviye bir renk değişimi elde edilmiş, böylelikle değişen polen konsantrasyonunu renk değişiminin bir fonksiyonu olarak saptayan bir prototip geliştirilmiştir. Geliştirilen bu prototip kolay ve bireysel kullanım sağlaması bakımından yenilikçi bir ürün özelliği taşımaktadır.

Development of a Novel Liquid Crystal Sensor for Pollen Detection

In this study, we have reported liquid crystal based-sensor for the detection of pollen concentration which triggers an allergy. Cholesteric liquid crystal which is mesophase of thermotropic liquid crystals was used a sensing element in the pollen sensor. The cholesteric liquid crystal samples operating at room temperature were formulated using nematic liquid crystal and chiral dopants in different compositions. The pollen concentration which is embedded in the cholesteric liquid crystal was determined as a function of change in color of cholesteric liquid crystal in the prototype. We demonstrated that the variation of color from green to blue with the increasing pollen concentration using Ocean Optics spectrophotometer. Therefore, the rapid and easy determination of pollen concentration have been became possible by using this prototype.  Our sensor will provide simplicity and self-test as a screen of pollen concentration by using the optical advantage of cholesteric liquid crystal as a sensing element. 

___

  • [1] Eder, W., Ege, M.J., von Mutius, E. 2006. The asthma epidemic: A Review, The New England Journal of Medicine, Volume. 355, p. 2226–2235. DOI: 10.1056/NEJMra054308. [2] Nathan, R.A., Meltzer, E.O., Selner, J.C. 1997. Storms W. Prevalence of allergic rhinitis in the United States. Journal of Allergy Clinical Immunology, Volume. 99, p. S808–S814. DOI:10.1016/S0091-6749(97)80040-1.
  • [3] Landsmeer, S.H., Hendriks, E.A., De Weger, L.A., et al. 2009. Detection of pollen grains in multifocal optical images of air samples. Microscopy Research and Technique, Volume. 72, p. 424-430. DOI: 10.1002/jemt.20688.
  • [4] Bıçakcı, A., Altunoğlu, M.K., Bilişik, A., Çelenk, S., Canitez, Y., Malyer, H., Sapan, N. 2009. Türkiye’nin atmosferik polenleri. Astım Allerji İmmünoloji, Volume. 7, p. 11–17 (in Turkish).
  • [5] Valenta, R., Duchene, M., Petternburger, K., et al. 1991. Identification of profilin as a novel pollen allergen; IgE autoreactivity in sensitized individuals. Science, Volume. 253, p. 557-560.
  • [6] Jenik, M., Seifner, A., Lieberzeit, P., Dickert, F.L. 2009. Pollen-imprinted polyurethanes for QCM allergen sensors, Analytical and Bioanalytical Chemistry, Volume. 394, p. 523–528. DOI: 10.1007/s00216-009-2718-8.
  • [7] Arnau, A. 2008. A Review of interface electronic systems for AT-cut quartz crystal microbalance applications in liquids. Sensors, Volume. 8, p. 370–411. DOI: 10.3390/s8010370.
  • [8] O’Sullivan, C.K., Guilbault, G.G. 1999. Commercial quartz crystal microbalances – theory and applications. Biosensors and Bioelectronics, Volume. 14, p. 663–670.
  • [9] Pejcic, B., Eadington, P., Ross, A. 2007. Environmental monitoring of hydrocarbons:  A chemical sensor perspective. Environmental Science and Technology, Volume. 41, p. 6333–6342. DOI: 10.1021/es0704535.
  • [10] Lieberzeit, P.A., Dickert, F.L. 2007. Sensor technology and its application in environmental analysis. A Review, Analytical and Bioanalytical Chemistry, Volume. 387, p. 237–247. DOI: 10.1007/s00216-006-0926-z.
  • [11] Sittampalam, G.S., Smith, W.C., Miyakawa, T.W., Smith, D.R., McMorris, C. 1996. Application of experimental design techniques to optimize a competitive ELISA. Journal of Immunological Methods, Volume. 190, p. 151–161.
  • [12] Jain, A., Verma, P.K., Tiwari, V., Goel, M.M. 2003. Development of a new antigen detection dot-ELISA for diagnosis of tubercular lymphadenitis in fine needle aspirates. Journal of Microbiological Methods, Volume. 53, p. 107–112.
  • [13] Mohammed, I., Muller, W.M., Lai, E.P.C., Yeung, J.M. 2001. Is biosensor a viable method for food allergen detection. Analytica Chimica Acta, Volume 444, p. 97–102. DOI: 10.1016/S0003-2670(01)01166-7.
  • [14] Hantusch, B., Scholl, I., Harwanegg, C., Krieger, S., Becker, W.M., Spitzauer, S., Boltz-Nitulescu, G., Jensen-Jarolim, E. 2005. Affinity determinations of purified IgE and IgG antibodies against the major pollen allergens Phl p 5a and Bet v 1a: discrepancy between IgE and IgG binding strength. Immunology Letters, Volume. 97, p. 81-89. DOI:10.1016/j.imlet.2004.10.002.
  • [15] Qader, I.N., Kök, M., Dagdelen, F., Aydogdu, Y. 2019. A Review of Smart Materials: Researches and Applications, El-Cezerî Fen ve Mühendislik, Volume 6, p. 755-788.
  • [16] Açıksarı, C., Karasu, B. 2018. Akıllı Camlar ve Teknolojik Gelişimleri, El-Cezerî Fen ve Mühendislik Dergisi, 5, p. 437-457.
  • [17] Horner, A.A., Redecke, V., Raz, E. 2004. Toll-like receptor ligands: hygiene, atopy and therapeutic implications. Current Opinion in Allergy Clinical Immunology, Volume. 4, p. 555–561.
  • [18] Luk, Y., Tingey, M.L., Dickson, K.A., Raines, R.T., Abbott, N.L. 2003. Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals. Journal of the American Chemical Society, Volume. 126, s. 9024–9032. DOI:10.1021/ja0398565.
  • [19] Luk, Y., Tingey, M.L., Hall, D.J., Israel, B.A., Murphy, C.J., Bertics, P.J., Abbott, N.L. 2003. Using liquid crystals to amplify protein-receptor interactions: design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors. A Review, Langmuir, Volume. 19, s. 1671–1680. DOI: 10.1021/la026152k. [20] Khan, M., Khan, A.R., Shin, J.H., Park, S.Y. 2016. A liquid-crystal-based DNA biosensor for pathogen detection. Scientific Reports, Volume. 6, 22676. DOI: 10.1038/srep22676.
  • [21] Kim, H.R., Kim, J.H., Kim, T.S., Oh, S.W., Choi, E.Y. 2005. Optical detection of deoxyribonucleic acid hybridization using an anchoring transition of liquid crystal alignment, Applied Physics Letters, Volume. 87, 143901. DOI:10.1063/1.2077859.
  • [22] Lockwood, N.A., Abbott, N.L. 2005. Self-assembly of surfactants and phospholipids at interfaces between aqueous phases and thermotropic liquid crystals. Current Opinion in Colloid and Interface Science, Volume. 10, s. 111–120. DOI:10.1016/j.cocis.2005.06.002.
  • [23] Lockwood, N.A., Gupta, J.K., Abbott, N.L. 2008. Self-assembly of amphiphiles, polymers and proteins at interfaces between thermotropic liquid crystals and aqueous phases. Surface Science Reports, Volume. 63, s. 255–293. DOI:10.1016/j.surfrep.2008.02.0 .
  • [24] He, S., Fang, J., Wu, T.S. 2015. A Liquid Crystal Biosensor for Liver Disease. SID Symposium Digest of Technical Papers, Volume. 46, s. 147-150. DOI: 10.1002/sdtp.10330.
Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi-Cover
  • ISSN: 1302-9304
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1999
  • Yayıncı: Dokuz Eylül Üniversitesi Mühendislik Fakültesi