ÇİMENTO ESASLI LİFLİ KOMPOZİTLERDE SU/ÇİMENTO ORANI VE MİNERAL KATKI TÜRÜNÜN ÇOKLU ÇATLAK DAVRANIŞINA ETKİSİ

Tasarlanmış Çimento Esaslı Kompozitler (ECC), mekanik açıdan uyumlu bir polimerik lif ve matris kullanılarak üretilen, geleneksel betona kıyasla daha düktil ve çoklu çatlak davranışı gösteren yeni nesil yapı malzemeleridir. Bu çalışmada mineral katkı türünün ve Su/Çimento (S/Ç) oranının eğilme performansına olan etkisi incelenmiştir. Deneysel çalışmalarda farklı kaynaklardan elde edilen iki farklı uçucu kül ve bir öğütülmüş granüle yüksek fırın cürufu türü kullanılarak üç farklı S/Ç oranında prizmatik kompozit (25x60x300 mm) üretimi gerçekleştirilmiştir. Söz konusu kompozitlerin yarısında yapay boşluk modifikasyonu yapılmıştır. 54 adet örnek hazırlanarak 28 gün su kürü sonrası 4 noktalı eğilme deneyleri gerçekleştirilmiştir. Deney sonuçları incelendiğinde, yüksek sehim kapasitesine (260 mm açıklıkta 14.9 mm orta nokta sehimi) ve yüksek eğilme dayanımına (11.9 MPa) sahip mikronize çatlama davranışı gösteren kompozitlerin üretilebileceği gözlemlenmiştir

EFFECTS OF WATER/CEMENT RATIO AND MINERAL ADDITIVE TYPE ON MULTIPLE CRACKING BEHAVIOR OF FIBER REINFORCED CEMENT BASED COMPOSITES

Engineered Cementitious Composites (ECC) are new generation construction materials that exhibit more ductility compared to traditional concrete by showing multiple cracking behavior which can be produced by using a mechanically compatible polymeric fiber and matrix. The effect of mineral admixtures’ type and water to cement ratio (W/C) on flexural performance have been investigated in this study. Within the scope of experimental studies, prismatic composites (25x60x300 mm) were prepared by using two fly ashes from different resources and a granulated blast furnace slag at three different W/C ratios. The pore structures of the half of the composites were modified by adding artificial flaws. 54 samples were prepared and 4 point bending tests were performed after 28 days water curing. Test results showed that composites exhibiting micro-cracking behaviour with a high deflection capacity (14.9 mm mid-point deflection at 260 mm midspan) and high flexural strength (11.9 MPa) can be obtained

___

  • Wang S, Li V.C. Engineered cementitious composites with high-volume fly ash, Materials Journal, Cilt.104, No.3, 2007, s.233-241.
  • Li V.C, Kanda T. Innovations Forum: Engineered cementitious composites for structural applications, Journal of Materials in Civil Engineering, Cilt.10, No.2, 1998, s.66-69.
  • Keoleian G, Kendall A.M, Lepech M.D, Li V.C. Guiding the design and application of new materials for enhancing sustainability performance: Framework and infrastructure application. In MRS Proceedings, Cilt.895, p.6, Cambridge University Press, 2005.
  • Fischer G, Li V.C. Influence of matrix ductility on tension-stiffening behavior of steel reinforced engineered cementitious composites (ECC), ACI Structural journal, Cilt.99, No.1, 2002, s.3.
  • Zhou J, Qian S, Beltran M.G.S, Ye G, van Breugel K, Li V.C. Development of engineered cementitious composites with limestone powder and blast furnace slag, Materials and Structures, Cilt.43, No.6, 2010, s.803-814.
  • Li V.C. Large volume, high-performance applications of fibers in civil engineering, Journal of Applied Polymer Science, Cilt.83, No.3, 2002, s.660-686.
  • Sahmaran M, Yucel H.E, Demirhan S, Arik M.T, Li V.C. Combined effect of aggregate and mineral admixtures on tensile ductility of engineered cementitious composites, ACI Materials Journal, Cilt.109, No.6, 2012, s.627-638.
  • Li V.C, Wang Y, Backer S. Fracture energy optimization in synthetic fiber reinforced cementitious composites, In MRS proceedings, Cilt.211, p.63, Cambridge University Press, 1991.
  • Li V.C. Engineered Cementitious Composites (ECC) – Tailored Composites Through Micromechanical Modeling, Fiber Reinforced Concrete: Present And The Future. Canadian Society of Civil Engineers; In: Banthia N, Mufti A, (Ed.), 1998, s.64–97.
  • Li V.C. J-Integral applications to characterization and tailoring of cementitious materials, Multiscale Deformation and Fracture in Materials and Structures, Cilt.84, 2002, s.385- 406.
  • Li V.C, Wang S. Suppression of fracture failure of structures by composite desing based on fracture mechanics, Paper 5543 of Compendium of Papers CD ROM, İtalya, Mart 2005, s.4.
  • Gödek E, Felekoğlu B, Tosun-Felekoğlu K. Mühendislik Özellikleri Geliştirilmiş Kompozitlerde Boşluk Yapısının ve Kür Koşullarının Eğilme Davranışı Üzerine Etkileri, 8. Mühendislik ve Teknoloji Sempozyumu Bildiriler Kitabı, Çankaya Üniversitesi, Ankara, 14-15 Mayıs 2015, s343-347.
  • Li V.C. From micromechanics to structural engineering – the design of cementitious composites for civil engineering applications, JSCE Journal of Structural Mechanics and Earthquake Engineering, Cilt.10, No.2, 1993, s.37–48.
  • Lin Z, Li V.C. Crack bridging in fiber reinforced cementitious composites with slip- hardening interfaces, Journal of the Mechanics and Physics of Solids, Cilt.45, No.5, 1997, s.763-787.
  • Redon C, Li V.C, Wu C, Hoshiro H, Saito T, Ogawa, A. Measuring and modifying interface properties of PVA fibers in ECC matrix, Journal of Materials in Civil Engineering, Cilt.13, No.6, 2001, s.399-406.
  • Li V.C, Wang S, Wu C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC), ACI materials Journal, Cilt.98, No.6, 2001, s.483-492.
  • Li V.C, Wu C, Wang S, Ogawa A, Saito T. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC), ACI Materials Journal, Cilt.99, No.5, 2002, s.463-472.
  • Felekoglu B, Tosun-Felekoglu K, Ranade R, Zhang Q, Li V.C. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC, Composites Part B: Engineering, Cilt.60, 2014, s.359-370. [19] Yang, E.H. Designing added functions in engineered cementitious composites. ProQuest, 2008.
  • de Lhoneux B, Reinhard K, Patricia K, Li V.C, Lin Z, Vidts D, Wang S, Wu H.C. Development of high tenacity polypropylene fibers for cementitious composites. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) - Application and Evaluation (DRFCC-2002), Takayama, Japan, Oct. 2002, s.121-132.
  • Ikai, S, Reichert J.R, Vasconcellos A.R, Zampieri V.A. Asbestos-free technology with new high tenacity PP–polypropylene fibers in air-cured Hatschek process. In 10th Int. Inorganic-bonded Fiber Composites Conf.(Iibcc 2006), 2006.
  • Huang X, Ranade R, Ni W, Li V.C. Development of green engineered cementitious composites using iron ore tailings as aggregates, Construction and Building Materials, Cilt.44, 2013, s.757-764.
  • Altwair N.M, Johari M.M, Hashim S.S. Flexural performance of green engineered cementitious composites containing high volume of palm oil fuel ash, Construction and Building Materials, Cilt.37, 2012, s.518-525.
  • Bang J.W, Prabhu G.G, Jang Y.I, Kim Y.Y. Development of Ecoefficient Engineered Cementitious Composites Using Supplementary Cementitious Materials as a Binder and Bottom Ash Aggregate as Fine Aggregate, International Journal of Polymer Science, 2015.
  • Yang Y.Z, Zhu Y, Gao X.J, Deng H.W. Experimental study on high-ductile PVA fiber- reinforced cement-based composite materials with fly ash, Journal of Qingdao technological university, Cilt.4, 2009, s.51-54.
  • Sahmaran M, Yucel H.E, Demirhan S, Arik M.T, Li V.C. Combined effect of aggregate and mineral admixtures on tensile ductility of engineered cementitious composites, ACI Materials Journal, Cilt.109, No.6, 2012, s.627-638.
  • Li W, Zhou X, Li N. Research on the Effect of Fly Ash Content on the Tensile Properties of PVA-ECC. In 2015 Asia-Pacific Energy Equipment Engineering Research Conference, Atlantis Press, 2015.
  • Özbay E, Karahan O, Lachemi M, Hossain K.M, Atis C.D. Dual effectiveness of freezing–thawing and sulfate attack on high-volume slag-incorporated ECC, Composites Part B: Engineering, Cilt.45, No.1, 2013, s.1384-1390.
  • Chen Z, Yang Y, Yao Y. Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag, Materials & Design, Cilt.44, 2013, s.500-508.
  • Kim J.K, Kim J.S, Ha G.J, Kim Y.Y. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag, Cement and Concrete Research, Cilt.37, No.7, 2007, s.1096-1105.
  • Zhang, J, Gong, C, Guo, Z, Zhang, M. Engineered cementitious composite with characteristic of low drying shrinkage. Cement and Concrete Research, Cilt.39, No.4, 2009, s.303-312.
  • Li, V.C. Tailoring ECC for special attributes: A review. International Journal of Concrete Structures and Materials, Cilt.6, No.3, 2012, s.135-144.
  • Wang, S, Li, V.C. Lightweight engineered cementitious composites (ECC). In PRO 30: 4th International RILEM Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC 4), Cilt.1, 2003, p.379.
  • Wittman, F.H., (Ed.). Durability of strain-hardening fibre-reinforced cement-based composites (SHCC), Springer Science & Business Media, Cilt.4, 2010, s.133.
  • Gödek E, Arslan A. Polimerik Lif Katkılı Kompozitlerin Çoklu Çatlak Davranışını Geliştirmeye Yönelik Çalışmalar, Dokuz Eylül Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği, 2014, s.32.
  • Yıldırım T, Uzun M.C, Ünal A.B. Boşluk yapısı modifiye edilmiş polimer lif katkılı kompozitlerin eğilme yüklemesi altında performanslarının incelenmesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği, 2014, s.44.
  • Qian S, Li V.C. New simple method for quality control of Strain Hardening Cementitious Composites (SHCCs), Fracture Mechanics of Concrete Structures – High Performance Concrete, Brick-Masonry and Enviromental Aspects, Carpinteri et al. (eds), 2007, s.1395-1402