Çakallar Monojenik Sinder Konisi’nin Jeolojisi ve Yığışım Lapilli Oluşumları (Kula Na-Alkali Volkanizması-Batı Anadolu)

Yığışım lapillileri esas olarak cam veya camın alterasyon ürünleri olmak üzere tamamen kırıntılı volkanik malzemeden oluşan yaklaşık bezelye büyüklüğünde yapılardır. Yığışım lapillileri, bunları üreten volkanizmanın doğası, volkanizma ürünü kayaçları etkileyen çökelim sonrası değişimler ve stratigrafinin belirlenmesi ile ilgili önemli bilgiler sağlamaktadır. Bu şekilde, volkanik faaliyetlere bağlı olarak gelişen ve bu faaliyetlerin meydana geldiği ortam ve köken açısından önemli ipuçları sağlayan yığışım lapillileri (accretionary lapilli) Kuvaterner yaşlı Na-alkali Kula volkanizmasının (Batı Anadolu) en genç (11.21 ka) ürünü Çakallar Sinder Konisi çevresinde yaygın şekilde gözlenmektedir. Çakallar volkanizması şiddeti az patlamalı-piroklastik püskürme ürünü ince kül yağması ile başlamıştır. Çok katmanlı kül tabakası arasında, eş boyutlu tanelere sahip, kül ara maddeli küresel yığışım lapilli zengin tabaka bulunmaktadır. İkinci evre patlamayla yığışım lapillilerin üzeri ince kül yağması ile tekrar örtülmüştür. Mezolitik dönem insanları Gediz nehri vadisine doğru inerken Çakallar konisinin etrafındaki yumuşak çamur kıvamındaki son kül tabakası üzerinde mükemmel şekilli ayak izlerini bırakmışlardır. Volkanik aktivitenin en son ve şiddetli evresinde Çakallar konisi son şeklini almıştır. Bu son evreye de tanıklık eden Mezolitik dönem insanları, sığınak olarak kullandıkları gnayslar üzerine şiddetli volkanik faaliyeti resimlemiş ve el izlerini bırakmışlardır. Çakallar Sinder Konisi’ne ait Zon-tipi yığışım lapillileri volkanik aktive sırasında gelişen elektrostatik çekim ve buhar fazının etkin olduğu koşulları yansıtmaktadır. Yığışım lapillileri Çakallar konisin püskürttüğü kül-yüklü bulutta, buhar fazının yoğunlaşması ile gelişen yağış sırasında yağmur damlalarının içine aldığı kül yığışımlarının birikmesiyle gelişmiştir ve dolu taneleri şeklinde ilk ince kül tabakası üzerine düşmüştür.

Geology of the Çakallar Monogenic Cinder Cones and Formation of the Accretionary Lapilli (Kula Na-Alkaline Volcanism-Western Anatolia)

The accretionary lapilli are approximately pea-sized particles, consisting essentially of clastic volcanic material, mainly glass or glass alteration products. The accretionary lapilli provide useful information about stratigraphy, the nature of volcanism producing them and post-depositional changes affecting the rocks that they contain. In this way, accretionary lapilli, which develop due to volcanic activity and provide important clues in terms of the environment and origin of these activities, are widely observed in the Çakallar Cinder Cone (Western Anatolia) which is the youngest (11.21 ka) product of the Quaternary Na-alkaline Kula volcanism. The Çakallar volcanism began with fine ash fall which is a low-explosive-pyroclastic eruption product. The ash fall has multiple layers and between these layers, there is a spherical accretionary lapilli-rich intermediate layer with equigranular grain and interstitial ash material. With a second stage explosion, accretionary lapilli has been covered by a very fine-ash fall. People, who lived in the Mesolithic Epoch, left their perfectly shaped footprints on this fine ash-layer which had a soft mud-like viscosity, when they descended towards the Gediz Valley. During the last destructive stage of the volcanic activity, the Çakallar cone has taken its final shape and has thrown volcanic bombs at nearby distances, reaching the meter-sized. The people of the Mesolithic Epoch who witnessed this last stage, also left their hand marks and depicted this volcanic activity on the gneisses (called as the Kanlı Kaya) that they used as shelters. It is emphasized that the accretionary lapilli of the Çakallar Cinder Cone, which is defined as rim-type accretionary lapilli, has probably been formed due to the conditions where the volcanic-related vapor phase was active during the Western Anatolian Quaternary volcanism. These structures probably developed with accumulation of ashfalls in the raindrops during the raining (precipitation) caused by the condensation of the vapor phase in an ash-charged volcanic cloud and fell into the form of hail-like grains.

___

  • Moore, J.B., Peck, D.L. 1962. Accretionary lapilli in volcanic rocks of the western continental United States. Journal of Geology, Cilt. 70, ss. 182-193.
  • Gilbert, J.S., Lane, S.J. 1994. The origin of accretionary lapilli. Bulletin of Volcanology, Cilt. 56, ss. 398-411.
  • Adams, P.M., Lynch, D.K., Buesch, D.C. 2016. Accretionary lapilli: what’s holding them together?. 2016 Desert Symposium, ss. 256-265.
  • Schumacher, R., Schmincke, H.S. 1995. Models for the origin of accretionary lapilli. Bulletin of Volcanology, Cilt. 56, ss. 626-639.
  • Brown, R.J., Branney, M.J., Maher, C., Dávila-Harris, P. 2009. Origin of accretionary lapilli within ground-hugging density currents: Evidence from pyroclastic couplets on Tenerife; Geological Society of America Bulletin, Cilt. 122 (1–2), s. 305–320. doi: 10.1130/B26449.1
  • Lacroix, A. 1904. La Montagne Pel6e et ses eruptions: Paris, ss. 1-662.
  • Lorenz, V. 1974. Vesiculated tufts and associated features. Sedimentology, Cilt. 21, ss. 273-291.
  • Schumacher, R., Schmincke, H.S. 1991. Internal structure and occurrence of accretionary lapilli - a case study at Laacher See Volcano. Bulletin of Volcanology, Cilt. 53, ss. 612-634.
  • Kittl, E. 1933. Estudio sobre los fen6menos volcfinicos y material cafdo durante la erupcion del grupo del "Descabezado" en el rues de abril de 1932. Anal Museo Nac Hist Nat (Buenos Aires), Cilt. 37, ss. 321-364.
  • Sorem, R.K. 1982. Volcanic ash clusters: tephra rafts and scavengers. Journal of Volcanology and Geothermal Research, Cilt. 13, ss. 63-71.
  • Gilbert, J.S., Lane, S.J., Sparks, R.S.J., Koyaguchi, T. 1991. Charge measurements on particle fallout from a volcanic plume. Nature, Cilt. 349, ss. 598-600.
  • Lane, S.J., Gilbert, J.S., Hilton, M. 1993. The aerodynamic behaviour of volcanic aggregates. Bulletin of Volcanology, Cilt. 55, ss. 481-488.
  • Güleç, N. 1991. Crust-mantle interaction in western Turkey: implications from Sr and Nd isotope geochemistry of Tertiary and Quaternary volcanics. Geological Magazine, Cilt. 128, ss. 417-435.
  • Bunbury, J.M.R. 1996. The Kula Volcanic Field, western Turkey: the devolopment of a Holocene alkali basalt province and the adjacent normal-faulting graben. Geological Magazine, Cilt. 133 (3), s. 275-283.
  • Seyitoğlu, G. 1997b. Late Cenozoic tectonosedimentary development of the Selendi and Uşak-Güre basins: a contribution to the discussion on the development of east–west and north trending basins in Western Turkey. Geological Magazine, Cilt. 134, ss. 163-175.
  • Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., Mitchell, J.G. 2000. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, Cilt. 102, s. 67–95.
  • Alıcı, P., Temel, A., Gourgaud, A. 2002. Pb-Nd-Sr isotope and trace element geochemistry of Quaternary extension-related alkaline volcanism: a case study of Kula region (western Anatolia, Turkey). Journal of Volcanology and Geothermal Research, Cilt. 115, s. 487-510.
  • Purvis, M., Robertson, A. 2005. Miocene sedimentary evolution of the NE-SWtrending Selendi and Gördes basins, western Turkey: implications for extensional processes. Sedimentary Geology, Cilt. 174, ss. 31-62.
  • Westaway, R., Pringle, M., Yurtmen, S., Demir, T., Bridgland, D., Rowbotham, G., Maddy, D. 2004. Pliocene and Quaternary regional uplift inwestern Turkey: the Gediz River terrace staircase and the volcanism at Kula. Tectonophysics, Cilt. 391, ss. 121-169.
  • Tokçaer, M., Agostini, S., Savaşçın, M.Y. 2005. Geotectonic setting and origin of the youngest Kula volcanics (Western Anatolia), with a new emplacement model. Turkish Journal of Earth Sciences, Cilt. 14, ss. 145-166.
  • Innocenti, F., Agostini, S., di Vincenzo, G., Doglioni, C., Manetti, P., Savaşçın, M.Y., Tonarini, S. 2005. Neogene and quaternary volcanism in Western Anatolia: Magma sources and geodynamic evolution. Marine Geology, Cilt. 221, ss. 397-421.
  • Holness, M. B., Bunbury, J. M. 2006. Insights into continental rift-related magma chambers: Cognate nodules from the Kula Volcanic Province, Western Turkey. Journal of Volcanology and Geothermal Research, Cilt. 153, ss. 241-261.
  • Westaway, R., Guillou, H., Yurtmen, S., Beck, A., Bridgland, D., Demir, T., Scaillet, S., Rowbotham, G. 2006. Late Cenozoic uplift of western Turkey: improved dating of the Kula Quaternary volcanic field and numerical modelling of the Gediz River terrace staircase. Global and Planetary Change, Cilt. 51, ss. 131-171.
  • Çoban, H. 2007. Basalt magma genesis and fractionation in collision and extension related provinces: a comparison between eastern, central and western Anatolia. Earth Science Reviews, Cilt. 80, s. 219-238.
  • Ersoy, E., Helvacı, C. 2007. Stratigraphy and geochemical features of the Early Miocene bimodal (ultrapotassic and calc-alkaline) volcanic activity within the NE-trending Selendi Basin, Western Anatolia, Turkey. Turkish Journal of Earth Science, Cilt. 16, s. 117-139.
  • Ersoy, E.Y., Helvacı, C., Sözbilir, H., Erkül, F., Bozkurt, E. 2008. A geochemical approach to Neogene– Quaternary volcanic activity of western Anatolia: an example of episodic bimodal volcanism within the Selendi Basin, Turkey. Chemical Geology, Cilt. 30, s. 265-282.
  • Ersoy, E.Y., Helvacı, C., Palmer, M.R. 2011. Stratigraphic, structural and geochemical geochemical features of the NE–SW-trending Neogene volcano-sedimentary basins in western Anatolia: implications for associations of supradetachment and transtensional strike-slip basin formation in extensional tectonic setting. Journal of Asian Earth Sciences, Cilt. 41, s. 159-183.
  • Ersoy, E.Y., Helvacı, C., Palmer, M.R. 2012. Petrogenesis of the Neogene volcanic units in the NE–SW-trending basins in western Anatolia, Turkey. Contributions to Mineralogy and Petrology, Cilt. 163, s. 379–401.
  • Karaoğlu, Ö., Helvacı, C., Ersoy, E.Y. 2010. Petrogenesis and 40Ar/39Ar Geochronology of the Volcanic Rocks of the Uşak-Güre basin, western Türkiye. Lithos, Cilt. 119, ss. 193-210.
  • Grützner, T., Prelevic, D., Akal C. 2013. Geochemistry and origin of ultramafic enclaves and their basanitic host rock from Kula Volcano, Turkey. Lithos, Cilt. 180-181, ss. 58-73.
  • Şen, E., Aydar, E., Bayhan, H., Gourgaud, A. 2013. Kula Volkanik Alanı’nın (Batı Anadolu) Fiziksel
  • Volkanolojis (Physical volcanology of Kula Volcanic Field, western Anatolia). İ.T.Ü. Avrasya Yerbilimleri Enstitüsü.
  • Şen, E., Aydar, E., Bayhan, H., Gourgaud, A. 2014. Alkali Bazalt ve Piroklastik Çökellerin Volkanolojik
  • Özellikleri, Kula Volkanları, Batı Anadolu (Volcanological characteristics of alkaline Basalt and Pyroclastic Deposits, Kula Volcanoes, Western Anatolia). Bulletin of Earth Sciences Application and Research Centre of Hacettepe Univ. Cilt. 35, ss. 219-252.
  • Heineke, C., Niedermann, S., Hetzel, R., Akal, C. 2016. Surface exposure dating of Holocene basalt flows and cinder cones in the Kula volcanic field (Western Turkey) using cosmogenic 3He and 10Be. Quaternary Geochronology, Cilt. 34, ss. 81-91.
  • Ozansoy, F. 1969. Türkiye pleistosen fosil insan ayak izleri. Maden Tetkik ve Arama Enstitüsü Dergisi, Cilt. 72, ss. 204-209.
  • Kayan, I., 1992. Demirköprü baraj gölü batı kıyısında Çakallar volkanizması ve fosil insan ayak izleri. Ege Coğrafya Dergisi, Cilt. 6, ss. 1-34.
  • Akal, C., Bulut, S., Kaya, T., Savaşçın, M.Y., Süvari, E.F., Türe, A. 2009. Turkey offers a new geopark to the world: Katakekaumene- Burnt Fıres geopark Project. Geoturismo & Desenvolvimento local (Geotourism & Local Development), s. 138-149.
  • Fytikas, M., Innocenti, F., Manetti, P., Mazzuoli, R., Peccerillo, A., Villari, L. 1984. Tertiary to Quaternary evolution of volcanism in the Aegean region, ss. 687-699. Dixon, J.E., Robertson, A.H.F. ed. 1984. The Geological Evolution of the Eastern Mediterranean. Geological Society of London Special Publications 17, 825s.
  • Faccenna, C., Jolivet, L., Piromallo, C., Morelli, A. 2003. Subduction and the depth of convection in the Mediterranean mantle. Journal of Geophysical Research. Cilt. 108 (B2), s. 2099. http:// dx.doi.org/10.1029/2001JB001690.
  • Brun, J.-P., Sokoutis, D. 2010. 45 m.y. of Aegean crust and mantle flow driven by trench retreat. Geology, Cilt. 38, s. 815-818.
  • Prelević, D., Akal, C., Foley, S.F., Romer, R.L., Stracke, A., van den Bogaard, P. 2012. Ultrapotassic mafic rocks as geochemical proxies for post-collisional Dynamics of orogenic lithospheric mantle: the case of southwestern Anatolia, Turkey. Journal of Petrology, Cilt. 53, ss. 1019-1055.
  • Seyitoğlu, G., Scott, B.C. 1991. Late Cenozoic extension and basin formation in West Turkey. Geological Magazine, Cilt. 128, ss. 155-166.
  • Bozkurt, E., 2000. Timing of extension on the Büyük Menderes Graben, western Turkey, and its tectonic implications, ss. 385-403. Bozkurt, E., Winchester, J.A., Piper, J.D.A., ed. 2000. Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society of London Special Publications, 173, 521s.
  • Purvis, M., Robertson, A. 2004. A pulsed extension model for the neogene-recent EW-trending Alas¸ ehir Graben and the NE-SW-trending Selendi and Gordes Basins, western Turkey. Tectonophysics, Cilt. 391, ss. 171-201.
  • Thomson, S.N., Ring, U. 2006. Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics, Cilt. 25, TC3005. http://dx.doi.org/10.1029/2005TC001833.
  • Glodny, J., Hetzel, R. 2007. Precise U-Pb ages of syn-extensional Miocene intrusions in the central Menderes Massif, western Turkey. Geological Magazine, Cilt. 144, ss. 235-246.
  • Buscher, J.T., Hampel, A., Hetzel, R., Dunkl, I., Glotzbach, C., Struffert, A., Akal, C., Rätz, M. 2013. Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. Journal of Geological Society, London, Cilt. 170, s. 669-683.
  • Ercan, T. 1993, Interpretation of geochemical, radiometric and isotopic data on Kula volcanics (Manisa-W.Anatolia), Geological Bulletin of Turkey, Cilt. 36, s. 113-129.
  • Richardson-Bunbury, J.M. 1996. The Kula Volcanic Field, western Turkey: the development of a Holocene alkali basalt province and the adjacent normalfaulting graben. Geological Magazine, Cilt. 133, ss. 275-283.
  • Yılmaz, Y. 1989. An approach to the origin of young volcanic rocks of western Turkey, ss. 159-189. Şengör, A.M.C. ed. 1989. Tectonic Evolution of the Tethyan Region. Kluwer Academic Publishers, 698s.
  • Yılmaz, Y. 1990. Comparison of young volcanic associations of western and eastern Anatolia formed under a compressional regime: a review. Journal of Volcanology and Geothermal Research, Cilt. 44, ss. 1-19. Bunbury, J.M., Hall, L., Anderson, G.J., Stannard, A. 2001. The determination of fault movement history from the interaction of local drainage with volcanic episodes. Geological Magazine, Cilt. 138, s. 185-192.
  • Borsi, S., Ferrara, G., Innocenti, F., Mazzuoli, R. 1972. Geochronology and petrology of recent volcanics in the Eastern Aegean Sea (West Anatolia and Lesvos Island). Bulletin of Volcanology. Cilt. 36, s. 473-496.
  • Göksu, H.Y. 1978. The TL age determination of fossil human footprints. Archaeo-Physika, Cilt. 10, ss. 455-462.